MDM2 inhibitors for cancer therapy
Tóm tắt
Từ khóa
Tài liệu tham khảo
Levine, 1997, p53, the cellular gatekeeper for growth and division, Cell, 88, 323, 10.1016/S0092-8674(00)81871-1
Harris, 2005, The p53 pathway: positive and negative feedback loops, Oncogene, 24, 2899, 10.1038/sj.onc.1208615
Oren, 2003, Decision making by p53: life, death and cancer, Cell Death Differ., 10, 431, 10.1038/sj.cdd.4401183
Moll, 2005, Transcription-independent pro-apoptotic functions of p53, Curr. Opin. Cell Biol., 17, 631, 10.1016/j.ceb.2005.09.007
Vousden, 2002, Live or let die: the cell's response to p53, Nat. Rev. Cancer, 2, 594, 10.1038/nrc864
Hainaut, 2000, p53 and human cancer: the first ten thousand mutations, Adv. Cancer Res., 77, 81, 10.1016/S0065-230X(08)60785-X
Fojo, 2002, p53 as a therapeutic target: unresolved issues on the road to cancer therapy targeting mutant p53, Drug Resist. Updat., 5, 209, 10.1016/S1368-7646(02)00119-X
Lane, 1999, Exploiting the p53 pathway for cancer diagnosis and therapy, Br. J. Cancer, 80, 1
Fakharzadeh, 1993, Structure and organization of amplified DNA on double minutes containing the mdm2 oncogene, Genomics, 15, 283, 10.1006/geno.1993.1058
Oliner, 1992, Amplification of a gene encoding a p53-associated protein in human sarcomas, Nature, 358, 80, 10.1038/358080a0
Freedman, 1999, Functions of the MDM2 oncoprotein, Cell. Mol. Life Sci., 55, 96, 10.1007/s000180050273
Momand, 1998, The MDM2 gene amplification database, Nucleic Acids Res., 26, 3453, 10.1093/nar/26.15.3453
Michael, 2003, The p53–Mdm2 module and the ubiquitin system, Semin. Cancer Biol., 13, 49, 10.1016/S1044-579X(02)00099-8
Momand, 1992, The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation, Cell, 69, 1237, 10.1016/0092-8674(92)90644-R
Honda, 1997, Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53, FEBS Lett., 420, 25, 10.1016/S0014-5793(97)01480-4
Jones, 1995, Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53, Nature, 378, 206, 10.1038/378206a0
Montes de Oca Luna, 1995, Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53, Nature, 378, 203, 10.1038/378203a0
Leng, 2003, Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation, Cell, 112, 779, 10.1016/S0092-8674(03)00193-4
Dornan, 2004, The ubiquitin ligase COP1 is a critical negative regulator of p53, Nature, 429, 86, 10.1038/nature02514
Chen, 2005, ARF-BP1/Mule is a critical mediator of the ARF tumor suppressor, Cell, 121, 1071, 10.1016/j.cell.2005.03.037
Bottger, 1999, Comparative study of the p53–mdm2 and p53–MDMX interfaces, Oncogene, 18, 189, 10.1038/sj.onc.1202281
Marine, 2005, Mdmx as an essential regulator of p53 activity, Biochem. Biophys. Res. Commun., 331, 750, 10.1016/j.bbrc.2005.03.151
Parant, 2001, Rescue of embryonic lethality in Mdm4-null mice by loss of Trp53 suggests a nonoverlapping pathway with MDM2 to regulate p53, Nat. Genet., 29, 92, 10.1038/ng714
Migliorini, 2002, Mdm4 (Mdmx) regulates p53-induced growth arrest and neuronal cell death during early embryonic mouse development, Mol. Cell. Biol., 22, 5527, 10.1128/MCB.22.15.5527-5538.2002
Francoz, 2006, Mdm4 and Mdm2 cooperate to inhibit p53 activity in proliferating and quiescent cells in vivo, Proc. Natl. Acad. Sci. U. S. A., 103, 3232, 10.1073/pnas.0508476103
Xiong, 2006, Synergistic roles of Mdm2 and Mdm4 for p53 inhibition in central nervous system development, Proc. Natl. Acad. Sci. U. S. A., 103, 3226, 10.1073/pnas.0508500103
Marine, 2006, Keeping p53 in check: essential and synergistic functions of Mdm2 and Mdm4, Cell Death Differ., 13, 927, 10.1038/sj.cdd.4401912
Danovi, 2004, Amplification of Mdmx (or Mdm4) directly contributes to tumor formation by inhibiting p53 tumor suppressor activity, Mol. Cell. Biol., 24, 5835, 10.1128/MCB.24.13.5835-5843.2004
Bond, 2005, MDM2 is a central node in the p53 pathway: 12 years and counting, Curr. Cancer Drug Targets, 5, 3, 10.2174/1568009053332627
Vousden, 2005, P53 and prognosis: new insights and further complexity, Cell, 120, 7, 10.1016/S0092-8674(04)01252-8
Bottger, 1997, Design of a synthetic Mdm2-binding mini protein that activates the p53 response in vivo, Curr. Biol., 7, 860, 10.1016/S0960-9822(06)00374-5
Chene, 2000, A small synthetic peptide, which inhibits the p53–hdm2 interaction, stimulates the p53 pathway in tumour cell lines, J. Mol. Biol., 299, 245, 10.1006/jmbi.2000.3738
Chene, 2003, Inhibiting the p53–MDM2 interaction: an important target for cancer therapy, Nat. Rev. Cancer, 3, 102, 10.1038/nrc991
Klein, 2004, Targeting the p53–MDM2 interaction to treat cancer, Br. J. Cancer, 91, 1415, 10.1038/sj.bjc.6602164
Chen, 1998, Synergistic activation of p53 by inhibition of MDM2 expression and DNA damage, Proc. Natl. Acad. Sci. U. S. A., 95, 195, 10.1073/pnas.95.1.195
Tortora, 2000, A novel MDM2 anti-sense oligonucleotide has anti-tumor activity and potentiates cytotoxic drugs acting by different mechanisms in human colon cancer, Int. J. Cancer, 88, 804, 10.1002/1097-0215(20001201)88:5<804::AID-IJC19>3.0.CO;2-Z
Zhang, 2005, Novel antisense anti-MDM2 mixed-backbone oligonucleotides: proof of principle, in vitro and in vivo activities, and mechanisms, Curr. Cancer Drug Targets, 5, 43, 10.2174/1568009053332663
Zhang, 2004, MDM2 is a negative regulator of p21WAF1/CIP1, independent of p53, J. Biol. Chem., 279, 16000, 10.1074/jbc.M312264200
Sun, 2003, Targeting E3 ubiquitin ligases for cancer therapy, Cancer Biol. Ther., 2, 623, 10.4161/cbt.2.6.677
Yang, 2005, Small molecule inhibitors of HDM2 ubiquitin ligase activity stabilize and activate p53 in cells, Cancer Cell, 7, 547, 10.1016/j.ccr.2005.04.029
Arkin, 2004, Small-molecule inhibitors of protein–protein interactions: progressing towards the dream, Nat. Rev. Drug Discov., 3, 301, 10.1038/nrd1343
Fry, 2005, Targeting protein–protein interactions for cancer therapy, J. Mol. Med., 83, 955, 10.1007/s00109-005-0705-x
Kussie, 1996, Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain, Science, 274, 948, 10.1126/science.274.5289.948
Fotouhi, 2005, Small molecule inhibitors of p53/MDM2 interaction, Curr. Top. Med. Chem., 5, 159, 10.2174/1568026053507705
Vassilev, 2005, p53 Activation by small molecules: application in oncology, J. Med. Chem., 48, 4491, 10.1021/jm058174k
Vassilev, 2004, In vivo activation of the p53 pathway by small-molecule antagonists of MDM2, Science, 303, 844, 10.1126/science.1092472
Tovar, 2006, Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: implications for therapy, Proc. Natl. Acad. Sci. U. S. A., 103, 1888, 10.1073/pnas.0507493103
Grasberger, 2005, Discovery and cocrystal structure of benzodiazepinedione HDM2 antagonists that activate p53 in cells, J. Med. Chem., 48, 909, 10.1021/jm049137g
Leonard, 2006, Novel 1,4-benzodiazepine-2,5-diones as Hdm2 antagonists with improved cellular activity, Bioorg. Med. Chem. Lett., 16, 3463, 10.1016/j.bmcl.2006.04.009
Koblish, 2006, Benzodiazepinedione inhibitors of the Hdm2:p53 complex suppress human tumor cell proliferation in vitro and sensitize tumors to doxorubicin in vivo, Mol. Cancer Ther., 5, 160, 10.1158/1535-7163.MCT-05-0199
Parks, 2006, Enhanced pharmacokinetic properties of 1,4-benzodiazepine-2,5-dione antagonists of the HDM2-p53 protein–protein interaction through structure-based drug design, Bioorg. Med. Chem. Lett., 16, 3310, 10.1016/j.bmcl.2006.03.055
Issaeva, 2004, Small molecule RITA binds to p53, blocks p53–HDM-2 interaction and activates p53 function in tumors, Nat. Med., 10, 1321, 10.1038/nm1146
Krajewski, 2005, NMR indicates that the small molecule RITA does not block p53–MDM2 binding in vitro, Nat. Med., 11, 1135, 10.1038/nm1105-1135
Ding, 2005, Structure-based design of potent non-peptide MDM2 inhibitors, J. Am. Chem. Soc., 127, 10130, 10.1021/ja051147z
Ding, 2006, Structure-based design of spiro-oxindoles as potent, specific small-molecule inhibitors of the MDM2-p53 interaction, J. Med. Chem., 49, 3432, 10.1021/jm051122a
Lu, 2006, Discovery of a nanomolar inhibitor of the human murine double minute 2 (MDM2)–p53 interaction through an integrated, virtual database screening strategy, J. Med. Chem., 49, 3759, 10.1021/jm060023+
Ahrendt, 1999, Rapid p53 sequence analysis in primary lung cancer using an oligonucleotide probe array, Proc. Natl. Acad. Sci. U. S. A., 96, 7382, 10.1073/pnas.96.13.7382
Poyurovsky, 2006, Unleashing the power of p53: lessons from mice and men, Genes Dev., 20, 125, 10.1101/gad.1397506
Michalak, 2005, Death squads enlisted by the tumour suppressor p53, Biochem. Biophys. Res. Commun., 331, 786, 10.1016/j.bbrc.2005.03.183
Satyamoorthy, 2001, No longer a molecular black box – new clues to apoptosis and drug resistance in melanoma, Trends Mol. Med., 7, 191, 10.1016/S1471-4914(01)02013-5
Satyamoorthy, 2000, Aberrant regulation and function of wild-type p53 in radioresistant melanoma cells, Cell Growth Differ., 11, 467
Soengas, 2001, Inactivation of the apoptosis effector Apaf-1 in malignant melanoma, Nature, 409, 207, 10.1038/35051606
Patton, 2006, Levels of HdmX expression dictate the sensitivity of normal and transformed cells to Nutlin-3, Cancer Res., 66, 3169, 10.1158/0008-5472.CAN-05-3832
Gudkov, 2003, The role of p53 in determining sensitivity to radiotherapy, Nat. Rev. Cancer, 3, 117, 10.1038/nrc992
Mendrysa, 2003, Mdm2 is critical for inhibition of p53 during lymphopoiesis and the response to ionizing irradiation, Mol. Cell. Biol., 23, 462, 10.1128/MCB.23.2.462-473.2003
Mendrysa, 2006, Tumor suppression and normal aging in mice with constitutively high p53 activity, Genes Dev., 20, 16, 10.1101/gad.1378506
Vassilev, 2004, Small-molecule antagonists of p53–MDM2 binding: research tools and potential therapeutics, Cell Cycle, 3, 419, 10.4161/cc.3.4.801
Appella, 2001, Post-translational modifications and activation of p53 by genotoxic stresses, Eur. J. Biochem., 268, 2764, 10.1046/j.1432-1327.2001.02225.x
Ljungman, 2000, Dial 9-1-1 for p53: mechanisms of p53 activation by cellular stress, Neoplasia, 2, 208, 10.1038/sj.neo.7900073
Thompson, 2004, Phosphorylation of p53 on key serines is dispensable for transcriptional activation and apoptosis, J. Biol. Chem., 279, 53015, 10.1074/jbc.M410233200
Stuhmer, 2005, Nongenotoxic activation of the p53 pathway as a therapeutic strategy for multiple myeloma, Blood, 106, 3609, 10.1182/blood-2005-04-1489
Kojima, 2005, MDM2 antagonists induce p53-dependent apoptosis in AML: implications for leukemia therapy, Blood, 106, 3150, 10.1182/blood-2005-02-0553
Coll-Mulet, 2006, MDM2 antagonists activate p53 and synergize with genotoxic drugs in B-cell chronic lymphocytic leukemia cells, Blood, 107, 4109, 10.1182/blood-2005-08-3273
Secchiero, 2006, Functional integrity of the p53-mediated apoptotic pathway induced by the nongenotoxic agent nutlin-3 in B-cell chronic lymphocytic leukemia (B-CLL), Blood, 107, 4122, 10.1182/blood-2005-11-4465
Brummelkamp, 2006, An shRNA barcode screen provides insight into cancer cell vulnerability to MDM2 inhibitors, Nat. Chem. Biol., 2, 202, 10.1038/nchembio774
Blagosklonny, 2001, Exploiting cancer cell cycling for selective protection of normal cells, Cancer Res., 61, 4301
Keyomarsi, 2003, Selective protection of normal proliferating cells against the toxic effects of chemotherapeutic agents, Prog. Cell Cycle Res., 5, 527
Blagosklonny, 2000, Pretreatment with DNA-damaging agents permits selective killing of checkpoint-deficient cells by microtubule-active drugs, J. Clin. Invest., 105, 533, 10.1172/JCI8625
Carvajal, 2005, Activation of p53 by MDM2 antagonists can protect proliferating cells from mitotic inhibitors, Cancer Res., 65, 1918, 10.1158/0008-5472.CAN-04-3576