MDCN: Multi-Scale Dense Cross Network for Image Super-Resolution

IEEE Transactions on Circuits and Systems for Video Technology - Tập 31 Số 7 - Trang 2547-2561 - 2021
Juncheng Li1,2, Faming Fang1,2, Jiaqian Li1,2, Kangfu Mei3, Guixu Zhang1,2
1School of Computer Science and Technology, East China Normal University, Shanghai, China
2Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, Shanghai, China
3The Chinese University of Hong Kong at Shenzhen, Shenzhen, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

10.1109/CVPR.2017.75

10.1109/LSP.2012.2227726

10.1016/j.cviu.2016.12.009

10.1109/CVPR.2018.00652

10.1109/CVPRW.2019.00246

10.1109/CVPRW.2019.00252

10.1109/CVPR.2016.350

10.1145/3338533.3366576

10.1109/CVPRW.2017.150

10.1016/j.neucom.2019.10.076

10.1109/TPAMI.2019.2917037

10.1109/CVPR.2019.00167

zhang, 2018, Image super-resolution using very deep residual channel attention networks, Proc Eur Conf Comput Vis, 286

10.1007/978-3-030-01237-3_32

10.1109/TIP.2020.2973769

10.1109/TCSVT.2018.2883771

10.1007/978-3-030-36711-4_5

10.1016/j.neucom.2019.05.066

10.1109/TPAMI.2020.2982166

10.1109/TMM.2019.2919431

10.1109/CVPRW.2017.150

zeyde, 2010, On single image scale-up using sparse-representations, Proc Int Conf Curves Surf, 711

10.5244/C.26.135

10.1109/ICCV.2001.937655

10.1109/ICCVW.2019.00474

10.1007/s11042-016-4020-z

10.1109/TMM.2019.2937688

10.1109/TPAMI.2010.161

10.1109/CVPR.2016.206

10.1109/TCSVT.2018.2839879

10.1109/TIP.2003.819861

10.1109/ICASSP.2019.8683719

10.1016/j.sigpro.2020.107567

10.1109/TIP.2011.2150234

10.1109/TIP.2006.877407

10.1109/CVPR.2018.00178

10.1109/TCSVT.2018.2864777

10.1109/CVPR.2018.00344

10.1109/TCSVT.2018.2890271

10.1109/TCSVT.2020.2988895

10.1109/TCSVT.2019.2906428

10.1109/TCSVT.2019.2915238

10.1109/TCSVT.2017.2763181

10.1109/TCSVT.2018.2890511

10.1007/978-3-030-04224-0_47

10.1109/CVPR.2018.00745

10.1109/CVPR.2017.243

10.1109/CVPR.2016.90

10.1109/TCSVT.2018.2874396

10.1109/TCSVT.2019.2890840

10.1109/TCSVT.2016.2600261

10.1109/TCSVT.2017.2776220

dong, 2014, Learning a deep convolutional network for image super-resolution, Proc Eur Conf Comput Vis, 184

10.1109/CVPR.2016.182

10.1109/ACCESS.2020.2974876

10.1007/978-3-319-46475-6_25

10.1109/CVPR.2016.181

10.1109/CVPR.2016.207

10.1109/CVPR.2017.618

10.1109/CVPRW.2017.151

10.1109/CVPR.2017.298

10.1109/ICCV.2017.514

haris, 2018, Deep back-projection networks for super-resolution, Proc IEEE Conf Comput Vis Pattern Recognit, 1664

wang, 2020, Learning for scale-arbitrary super-resolution from scale-specific networks, arXiv 2004 03791

10.1109/TIP.2018.2826139

10.1109/TIP.2012.2231086

timofte, 2014, A+: Adjusted anchored neighborhood regression for fast super-resolution, Proc ACCV, 111

10.1109/ICCV.2013.241

10.1109/TMM.2014.2364976

10.1109/TMM.2012.2232646

10.1109/CVPR.2018.00262

10.1109/CVPR.2015.7299156

10.1109/CVPR.2015.7298594

10.1007/978-3-030-29911-8_51

10.1109/CVPR.2017.195

10.1109/CVPR.2016.308

10.1109/TGRS.2020.2966805

10.3390/s20041142

10.1007/s11227-019-03066-3

10.1109/COMPSAC.2019.10240