MCMC algorithms for Subset Simulation

Probabilistic Engineering Mechanics - Tập 41 - Trang 89-103 - 2015
Iason Papaioannou1, Wolfgang Betz1, Kilian Zwirglmaier1, Eleni Chatzi1
1Engineering Risk Analysis Group, Technische Universität München, 80290 Munich, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Andrieu, 2008, A tutorial on adaptive MCMC, Stat. Comput., 18, 343, 10.1007/s11222-008-9110-y

Ang, 1992, Optimal importance sampling density estimator, J. Eng. Mech. ASCE, 118, 1146, 10.1061/(ASCE)0733-9399(1992)118:6(1146)

Au, 1999, A new adaptive importance sampling scheme, Struct. Saf., 21, 135, 10.1016/S0167-4730(99)00014-4

Au, 2001, Estimation of small failure probabilities in high dimensions by Subset Simulation, Probab. Eng. Mech., 16, 263, 10.1016/S0266-8920(01)00019-4

Au, 2003, Important sampling in high dimensions, Struct. Saf., 25, 139, 10.1016/S0167-4730(02)00047-4

Au, 2003, Subset Simulation and its application to seismic risk based on dynamic analysis, J. Eng. Mech. ASCE, 129, 901, 10.1061/(ASCE)0733-9399(2003)129:8(901)

Au, 2010, Implementing advanced Monte Carlo simulation under spreadsheet environment, Struct. Saf., 32, 281, 10.1016/j.strusafe.2010.03.004

Au, 2011, Discussion of paper by F. Miao and M. Ghosn “Modified Subset Simulation method for reliability analysis of structural systems”, Struct. Saf., 33, 251, 10.1016/j.strusafe.2011.02.004

Besag, 1995, Bayesian computation and stochastic systems, Stat. Sci., 10, 3, 10.1214/ss/1177010123

Botev, 2012, Efficient Monte Carlo simulation via the generalized splitting method, Stat. Comput., 22, 1, 10.1007/s11222-010-9201-4

Bucher, 1988, Adaptive sampling – an iterative fast Monte Carlo procedure, Struct. Saf., 5, 119, 10.1016/0167-4730(88)90020-3

Bucher, 2009, Asymptotic sampling for high-dimensional reliability analysis, Probab. Eng. Mech., 24, 504, 10.1016/j.probengmech.2009.03.002

Cérou, 2012, Sequential Monte Carlo for rare event estimation, Stat. Comput., 22, 795, 10.1007/s11222-011-9231-6

Del Moral, 2006, Sequential Monte Carlo samplers, J. R. Stat. Soc.: Ser. B Stat. Methodol., 68, 411, 10.1111/j.1467-9868.2006.00553.x

Der Kiureghian, 1986, Structural reliability under incomplete probability information, J. Eng. Mech. ASCE, 112, 85, 10.1061/(ASCE)0733-9399(1986)112:1(85)

Ditlevsen, 1996

Engelund, 1993, A benchmark study on importance sampling techniques in structural reliability, Struct. Saf., 12, 255, 10.1016/0167-4730(93)90056-7

Flury, 1990, Acceptance-rejection sampling made easy, SIAM Rev., 32, 474, 10.1137/1032082

Fujita, 1988, Updating first- and second-order estimates by importance sampling, Struct. Eng./Earthq. Eng., 5, 53

Gelman, 1996, Efficient Metropolis jumping rules, Bayesian Stat., 5, 599, 10.1093/oso/9780198523567.003.0038

Ghanem, 1991

Gilks, 1998, Adaptive Markov chain Monte Carlo through regeneration, J. Am. Stat. Assoc., 93, 1045, 10.1080/01621459.1998.10473766

Haario, 2001, An adaptive Metropolis algorithm, Bernoulli, 7, 223, 10.2307/3318737

Haario, 2005, Componentwise adaptation for high dimensional MCMC, Comput. Stat., 20, 265, 10.1007/BF02789703

Hastings, 1970, Monte Carlo sampling methods using Markov chains and their applications, Biometrica, 57, 97, 10.1093/biomet/57.1.97

Hayes, 1981, Modification of estimates of parameters in the construction of generic selection indices (‘Bending’), Biometrics, 37, 483, 10.2307/2530561

Hohenbichler, 1981, Non-normal dependent vectors in structural safety, J. Eng. Mech. ASCE, 107, 1227

Hohenbichler, 1988, Improvements of second-order reliability estimates by importance sampling, J. Eng. Mech. ASCE, 114, 2195, 10.1061/(ASCE)0733-9399(1988)114:12(2195)

Katafygiotis, 2007, Application of the spherical Subset Simulation method and auxiliary domain method on a benchmark reliability study, Struct. Saf., 29, 194, 10.1016/j.strusafe.2006.07.003

Katafygiotis, 2008, Geometric insight into the challenges of solving high-dimensional reliability problems, Probab. Eng. Mech., 23, 208, 10.1016/j.probengmech.2007.12.026

Koutsourelakis, 2004, Reliability of structures in high-dimensions, part I: algorithms and applications, Probab. Eng. Mech., 19, 409, 10.1016/j.probengmech.2004.05.001

Kurtz, 2013, Cross-entropy-based adaptive importance sampling using Gaussian mixture, Struct. Saf., 42, 35, 10.1016/j.strusafe.2013.01.006

Metropolis, 1953, Equation of state calculations by fast computing machines, J. Chem. Phys., 21, 1087, 10.1063/1.1699114

Miao, 2011, Modified Subset Simulation method for reliability analysis of structural systems, Struct. Saf., 33, 251, 10.1016/j.strusafe.2011.02.004

Mykland, 1995, Regeneration in Markov chain samplers, J. Am. Stat. Assoc., 90, 233, 10.1080/01621459.1995.10476507

Neal, 1998, Regression and classification using Gaussian process priors, Bayesian Stat., 6, 475

Pasarica, 2010, Adaptively scaling the Metropolis algorithm using expected squared jumped distance, Stat. Sin., 20, 343

Rackwitz, 2001, Reliability analysis – a review and some perspectives, Struct. Saf., 23, 365, 10.1016/S0167-4730(02)00009-7

Roberts, 1997, Weak convergence and optimal scaling of random walk Metropolis algorithms, Ann. Appl. Probab., 7, 110, 10.1214/aoap/1034625254

Roberts, 1998, Optimal scaling of discrete approximations to Langevin diffusions, J. R. Stat. Soc.: Ser. B Stat. Methodol., 60, 255, 10.1111/1467-9868.00123

Roberts, 2001, Optimal scaling for various Metropolis–Hastings algorithms, Stat. Sci., 16, 351, 10.1214/ss/1015346320

Rubinstein, 2007

Schuëller, 2004, A critical appraisal of reliability estimation procedures for high dimensions, Probab. Eng. Mech., 19, 463, 10.1016/j.probengmech.2004.05.004

Schuëller, 1987, A critical appraisal of methods to determine failure probabilities, Struct. Saf., 4, 239, 10.1016/0167-4730(87)90004-X

Santoso, 2011, Modified Metropolis–Hastings algorithm with reduced chain correlation for efficient Subset Simulation, Probab. Eng. Mech., 26, 331, 10.1016/j.probengmech.2010.08.007

Tierney, 1994, Markov chains for exploring posterior distributions, Ann. Stat., 22, 1701, 10.1214/aos/1176325750

Tierney, 1999, Some adaptive Monte Carlo methods for Bayesian inference, Stat. Med., 18, 2507, 10.1002/(SICI)1097-0258(19990915/30)18:17/18<2507::AID-SIM272>3.0.CO;2-J

Valdebenito, 2010, The role of the design point for calculating failure probabilities in view of dimensionality and structural nonlinearities, Struct. Saf., 32, 101, 10.1016/j.strusafe.2009.08.004

Zuev, 2012, Bayesian post-processor and other enhancements of Subset Simulation for estimating failure probabilities in high dimensions, Comput. Struct., 92-93, 283, 10.1016/j.compstruc.2011.10.017

Zuev, 2011, Modified Metropolis-Hastings algorithm with delayed rejection, Probab. Eng. Mech., 26, 405, 10.1016/j.probengmech.2010.11.008