MCMC algorithms for Subset Simulation
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ang, 1992, Optimal importance sampling density estimator, J. Eng. Mech. ASCE, 118, 1146, 10.1061/(ASCE)0733-9399(1992)118:6(1146)
Au, 1999, A new adaptive importance sampling scheme, Struct. Saf., 21, 135, 10.1016/S0167-4730(99)00014-4
Au, 2001, Estimation of small failure probabilities in high dimensions by Subset Simulation, Probab. Eng. Mech., 16, 263, 10.1016/S0266-8920(01)00019-4
Au, 2003, Important sampling in high dimensions, Struct. Saf., 25, 139, 10.1016/S0167-4730(02)00047-4
Au, 2003, Subset Simulation and its application to seismic risk based on dynamic analysis, J. Eng. Mech. ASCE, 129, 901, 10.1061/(ASCE)0733-9399(2003)129:8(901)
Au, 2010, Implementing advanced Monte Carlo simulation under spreadsheet environment, Struct. Saf., 32, 281, 10.1016/j.strusafe.2010.03.004
Au, 2011, Discussion of paper by F. Miao and M. Ghosn “Modified Subset Simulation method for reliability analysis of structural systems”, Struct. Saf., 33, 251, 10.1016/j.strusafe.2011.02.004
Botev, 2012, Efficient Monte Carlo simulation via the generalized splitting method, Stat. Comput., 22, 1, 10.1007/s11222-010-9201-4
Bucher, 1988, Adaptive sampling – an iterative fast Monte Carlo procedure, Struct. Saf., 5, 119, 10.1016/0167-4730(88)90020-3
Bucher, 2009, Asymptotic sampling for high-dimensional reliability analysis, Probab. Eng. Mech., 24, 504, 10.1016/j.probengmech.2009.03.002
Cérou, 2012, Sequential Monte Carlo for rare event estimation, Stat. Comput., 22, 795, 10.1007/s11222-011-9231-6
Del Moral, 2006, Sequential Monte Carlo samplers, J. R. Stat. Soc.: Ser. B Stat. Methodol., 68, 411, 10.1111/j.1467-9868.2006.00553.x
Der Kiureghian, 1986, Structural reliability under incomplete probability information, J. Eng. Mech. ASCE, 112, 85, 10.1061/(ASCE)0733-9399(1986)112:1(85)
Ditlevsen, 1996
Engelund, 1993, A benchmark study on importance sampling techniques in structural reliability, Struct. Saf., 12, 255, 10.1016/0167-4730(93)90056-7
Fujita, 1988, Updating first- and second-order estimates by importance sampling, Struct. Eng./Earthq. Eng., 5, 53
Gelman, 1996, Efficient Metropolis jumping rules, Bayesian Stat., 5, 599, 10.1093/oso/9780198523567.003.0038
Ghanem, 1991
Gilks, 1998, Adaptive Markov chain Monte Carlo through regeneration, J. Am. Stat. Assoc., 93, 1045, 10.1080/01621459.1998.10473766
Haario, 2005, Componentwise adaptation for high dimensional MCMC, Comput. Stat., 20, 265, 10.1007/BF02789703
Hastings, 1970, Monte Carlo sampling methods using Markov chains and their applications, Biometrica, 57, 97, 10.1093/biomet/57.1.97
Hayes, 1981, Modification of estimates of parameters in the construction of generic selection indices (‘Bending’), Biometrics, 37, 483, 10.2307/2530561
Hohenbichler, 1981, Non-normal dependent vectors in structural safety, J. Eng. Mech. ASCE, 107, 1227
Hohenbichler, 1988, Improvements of second-order reliability estimates by importance sampling, J. Eng. Mech. ASCE, 114, 2195, 10.1061/(ASCE)0733-9399(1988)114:12(2195)
Katafygiotis, 2007, Application of the spherical Subset Simulation method and auxiliary domain method on a benchmark reliability study, Struct. Saf., 29, 194, 10.1016/j.strusafe.2006.07.003
Katafygiotis, 2008, Geometric insight into the challenges of solving high-dimensional reliability problems, Probab. Eng. Mech., 23, 208, 10.1016/j.probengmech.2007.12.026
Koutsourelakis, 2004, Reliability of structures in high-dimensions, part I: algorithms and applications, Probab. Eng. Mech., 19, 409, 10.1016/j.probengmech.2004.05.001
Kurtz, 2013, Cross-entropy-based adaptive importance sampling using Gaussian mixture, Struct. Saf., 42, 35, 10.1016/j.strusafe.2013.01.006
Metropolis, 1953, Equation of state calculations by fast computing machines, J. Chem. Phys., 21, 1087, 10.1063/1.1699114
Miao, 2011, Modified Subset Simulation method for reliability analysis of structural systems, Struct. Saf., 33, 251, 10.1016/j.strusafe.2011.02.004
Mykland, 1995, Regeneration in Markov chain samplers, J. Am. Stat. Assoc., 90, 233, 10.1080/01621459.1995.10476507
Neal, 1998, Regression and classification using Gaussian process priors, Bayesian Stat., 6, 475
Pasarica, 2010, Adaptively scaling the Metropolis algorithm using expected squared jumped distance, Stat. Sin., 20, 343
Rackwitz, 2001, Reliability analysis – a review and some perspectives, Struct. Saf., 23, 365, 10.1016/S0167-4730(02)00009-7
Roberts, 1997, Weak convergence and optimal scaling of random walk Metropolis algorithms, Ann. Appl. Probab., 7, 110, 10.1214/aoap/1034625254
Roberts, 1998, Optimal scaling of discrete approximations to Langevin diffusions, J. R. Stat. Soc.: Ser. B Stat. Methodol., 60, 255, 10.1111/1467-9868.00123
Roberts, 2001, Optimal scaling for various Metropolis–Hastings algorithms, Stat. Sci., 16, 351, 10.1214/ss/1015346320
Rubinstein, 2007
Schuëller, 2004, A critical appraisal of reliability estimation procedures for high dimensions, Probab. Eng. Mech., 19, 463, 10.1016/j.probengmech.2004.05.004
Schuëller, 1987, A critical appraisal of methods to determine failure probabilities, Struct. Saf., 4, 239, 10.1016/0167-4730(87)90004-X
Santoso, 2011, Modified Metropolis–Hastings algorithm with reduced chain correlation for efficient Subset Simulation, Probab. Eng. Mech., 26, 331, 10.1016/j.probengmech.2010.08.007
Tierney, 1994, Markov chains for exploring posterior distributions, Ann. Stat., 22, 1701, 10.1214/aos/1176325750
Tierney, 1999, Some adaptive Monte Carlo methods for Bayesian inference, Stat. Med., 18, 2507, 10.1002/(SICI)1097-0258(19990915/30)18:17/18<2507::AID-SIM272>3.0.CO;2-J
Valdebenito, 2010, The role of the design point for calculating failure probabilities in view of dimensionality and structural nonlinearities, Struct. Saf., 32, 101, 10.1016/j.strusafe.2009.08.004
Zuev, 2012, Bayesian post-processor and other enhancements of Subset Simulation for estimating failure probabilities in high dimensions, Comput. Struct., 92-93, 283, 10.1016/j.compstruc.2011.10.017