MCM-41-supported vanadium catalysts structurally modified with Al or Zr for thiophene hydrodesulfurization

Applied Petrochemical Research - Tập 9 - Trang 47-55 - 2019
Yelisbeth Escalante1,2, Franklin J. Méndez1,3, Yraida Díaz1, Marcel Inojosa1, Myloa Morgado1, Miguel Delgado4, Ernesto Bastardo-González5,6, Joaquín L. Brito1,6
1Centro de Química, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
2Instituto de Investigaciones en Tecnología Química, Universidad Nacional de San Luis, San Luis, Argentina
3Instituto de Física, Universidad Nacional Autónoma de México, Ciudad de México (Mexico)
4Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
5Departamento de Química, Universidad de Oriente - Núcleo de Sucre, Cumaná, Venezuela
6School of Chemistry and Engineering, Yachay Tech University, Urcuquí, Ecuador

Tóm tắt

Vanadium catalysts supported on Al(Zr)-MCM-41-type materials were prepared by impregnation. Textural and structural properties, elemental composition and electronic structure were determined by N2 physisorption, small-angle XRD, SEM–EDX and UV–vis DRS, respectively. Al-containing materials showed mostly of Al framework and a small fraction of Al extra-framework species. Zr-containing materials presented almost exclusively small clusters of ZrxOy covering the MCM-41 matrix. Vanadium catalysts, showed the presence of isolated V5+ species and to a lesser extent polymeric chains likely as small crystallites of V2O5. The catalytic results revealed that VAlM30 catalyst, characterized by a Si/Al atomic ratio of 30, was the most active in thiophene hydrodesulfurization, which could be associated to better textural properties and high dispersion of the vanadium species.

Tài liệu tham khảo

Topsøe H, Clausen BS, Massoth FE (1996) Hydrotreating Catalysis. In: Anderson JR, Boudart M (eds) Catalysis-science and technology. Springer, Berlin, pp 1–269 Song C (2003) MCM-41-supported Co-Mo catalysts for deep hydrodesulfurization of light cycle oil. Catal Today 86:211–263. https://doi.org/10.1016/S0920-5861(03)00463-2 Goulon J, Retournard A, Friant P, Goulon-Ginet C, Berthe C, Muller JF, Poncet JL, Guilard R, Escalier JC, Neff B (1984) Structural characterization by X-ray absorption spectroscopy (EXAFS/XANES) of the vanadium chemical environment in Boscan asphaltenes. J Chem Soc, Dalton Trans 1984:1095–1103. https://doi.org/10.1039/DT9840001095 Furimsky E, Massoth F (1999) Deactivation of hydroprocessing catalysts. Catal Today 52:381–495. https://doi.org/10.1016/S0920-5861(99)00096-6 Asaoka S, Nakata S, Shiroto Y, Takeuchi C (1987) Characteristics of vanadium complexes in petroleum before and after hydrotreating. In: Filby RH, Branthaver JF (eds) Metal complexes in fossil fuels. American Chemical Society, Washington, pp 275–289 Rana M, Ancheyta J, Maity SK, Rayo P (2005) Characteristics of Maya crude hydrodemetallization and hydrodesulfurization catalysts. Catal Today 104:86–93. https://doi.org/10.1016/j.cattod.2005.03.059 Betancourt P, Rives A, Scott CE, Hubaut R (2000) Hydrotreating on mixed vanadium–nickel sulphides: a study of the synergetic effect. Catal Today 57:201–207. https://doi.org/10.1016/S0920-5861(99)00327-2 Betancourt P, Marrero S, Pinto-Castilla S (2013) V-Ni–Mo sulfide supported on Al2O3: preparation, characterization and LCO hydrotreating. Fuel Process Technol 114:21–25. https://doi.org/10.1016/j.fuproc.2013.03.013 Wang A, Wang Y, Kabe T, Chen Y, Ishihara A, Qian W (2001) Hydrodesulfurization of dibenzothiophene over siliceous MCM-41-supported catalysts. Part I: sulfided Co–Mo catalysts. J Catal 199:19–29. https://doi.org/10.1006/jcat.2000.3148 Wang A, Wang Y, Kabe T, Chen Y, Ishihara A, Qian W, Yao P (2002) Hydrodesulfurization of dibenzothiophene over siliceous MCM-41-supported catalysts. Part II: sulfided Ni–Mo catalysts. J Catal 210:319–327. https://doi.org/10.1006/jcat.2002.3674 Méndez FJ, Llanos A, Echeverría M, Jáuregui R, Villasana Y, Díaz Y, Liendo-Polanco G, Ramos-García MA, Zoltan T, Brito JL (2013) Mesoporous catalysts based on Keggin-type heteropolyacids supported on MCM-41 and their application in thiophene hydrodesulfurization. Fuel 110:249–258. https://doi.org/10.1016/j.fuel.2012.11.021 Beck JS, Vartuli JC, Roth JW, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 114:10834–10843. https://doi.org/10.1021/ja00053a020 Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid crystal template mechanism. Nature 359:710–712. https://doi.org/10.1038/359710a0 Melo RAA, Giotto MV, Rocha J, Urquieta-González EA (1999) MCM-41 ordered mesoporous molecular sieves: synthesis and characterization. Mater Res 2:173–179. https://doi.org/10.1590/S1516-14391999000300010 Hunger M, Schenk U, Breuninger M, Glaser R, Weitkamp J (1999) Characterization of the acid sites in MCM-41-type materials by spectroscopic and catalytic techniques. Microporous Mesoporous Mater 27:261–271. https://doi.org/10.1016/S1387-1811(98)00260-1 Chen LF, Noreña LE, Navarrete J, Wang JA (2006) Improvement of surface acidity and structural regularity of Zr-modified mesoporous MCM-41. Mater Chem Phys 97:236–242. https://doi.org/10.1016/j.matchemphys.2005.08.043 Klimova T, Calderón M, Ramirez J (2003) Ni and Mo interaction with Al-containing MCM-41 support and its effect on the catalytic behavior in DBT hydrodesulfurization. Appl Catal A 240:29–40. https://doi.org/10.1016/S0926-860X(02)00417-9 Méndez FJ, Bastardo-González E, Betancourt P, Paiva L, Brito JL (2014) NiMo/MCM-41 catalysts for the hydrotreatment of polychlorinated biphenyls. Catal Lett 143:93–100. https://doi.org/10.1007/s10562-012-0933-y Rodríguez-Castellón E, Jiménez-López A, Eliche-Quesada D (2008) Nickel and cobalt promoted tungsten and molybdenum sulfide mesoporous catalysts for hydrodesulfurization. Fuel 87:1195–1206. https://doi.org/10.1016/j.fuel.2007.07.020 Jaroszewska K, Lewandowski M, Grzechowiak JR, Szyja B (2011) Hydrodesulphurisation of 4,6-dimethyldibenzothiophene over NiMo catalysts supported on Ti(Al) modified MCM-41. Catal Today 176:202–207. https://doi.org/10.1016/j.cattod.2011.01.013 Mendez FJ, Franco-López OE, Bokhimi X, Solís-Casados DA, Escobar-Alarcón L, Klimova TE (2017) Dibenzothiophene hydrodesulfurization with NiMo and CoMo catalysts supported on niobium-modified MCM-41. App Catal B: Environ 219:479–491. https://doi.org/10.1016/j.apcatb.2017.07.079 Salas P, Wang JA, Armendariz H, Angeles-Chavez C, Chen LF (2009) Effect of the Si/Zr molar ratio on the synthesis of Zr-based mesoporous molecular sieves. Mater Chem Phys 114:139–144. https://doi.org/10.1016/j.matchemphys.2008.08.086 Stober W, Fink A (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69. https://doi.org/10.1016/0021-9797(68)90272-5 La-Salvia N, Lovón-Quintana JJ, Pagani Lovóna AS, Paim Valença G (2017) Influence of aluminum addition in the framework of MCM-41 mesoporous molecular sieve synthesized by non-hydrothermal method in an alkali-free system. Mater Res 20:1461–1469. https://doi.org/10.1590/1980-5373-mr-2016-1064 Cassiers K, Linssen T, Mathieu M, Benjelloun M, Schrijnemakers K, Van Der Voort P, Cool P, Vansant EF (2002) Detailed study of thermal, hydrothermal, and mechanical stabilities of a wide range of surfactant assembled mesoporous silicas. Chem Mater 14:2317–2324. https://doi.org/10.1021/cm0112892 Garbowskit DE, Mirodatos C (1982) Investigation of structural charge transfer in zeolites by UV spectroscopy. J Phys Chem 86:97–102. https://doi.org/10.1021/j100390a019 Zanjanchi MA, Razavi A (2001) Identification and estimation of extra-framework aluminium in acidic mazzite by diffuse reflectance spectroscopy. Spectrochim Acta A 57:119–127. https://doi.org/10.1016/S1386-1425(00)00339-5 Zanjanchi MA, Asgari S (2004) Incorporation of aluminum into the framework of mesoporous MCM-41: the contribution of diffuse reflectance spectroscopy. Solid State Ion 171:277–282. https://doi.org/10.1016/j.ssi.2004.05.005 Baltes M, Cassiers K, Van Der Voort P, Weckhuysen BM, Schoonheydt RA, Vansant EF (2001) MCM-48-supported vanadium oxide catalysts, prepared by the molecular designed dispersion of VO(acac)2: a detailed study of the highly reactive MCM-48 surface and the structure and activity of the deposited VOx. J Catal 197:160–171. https://doi.org/10.1006/jcat.2000.3066 Naydenov V, Tosheva L, Sterte J (2002) Spherical silica macrostructures containing vanadium and tungsten oxides assembled by the resin templating method. Microporous Mesoporous Mater 55:253–263. https://doi.org/10.1016/S1387-1811(02)00427-4 Haskouri JE, Cabrera S, Guillem C (2002) Atrane Precursors in the one-pot surfactant-assisted synthesis of high zirconium content porous silicas. Chem Mater 14:5015–5022. https://doi.org/10.1021/cm020131u Du Y, Sun Y, Di Y, Zhao L, Liu S, Xiao FS (2006) Ordered mesoporous sulfated silica-zirconia materials with high zirconium contents in the structure. J Porous Mat 13:163–171. https://doi.org/10.1007/s10934-006-7026-5 Bachari K, Chebout R, Guerroudj RM, Lamouchi M (2012) Preparation and characterization of Zr-MCM-41 synthesized under microwave irradiation condition for acetylation of 1,2-dimethoxybenzene with acetic anhydride. Res Chem Intermed 38:367–381. https://doi.org/10.1007/s11164-011-0353-4 Rodríguez-Castellón E, Jiménez-López A, Maireles-Torres P (2003) Textural and structural properties and surface acidity characterization of mesoporous silica-zirconia molecular sieves. J Solid State Chem 175:159–169. https://doi.org/10.1016/S0022-4596(03)00218-4 Ramanathan A, Castro VMC, Kwakernaak C, Telalovic S, Hanefeld U (2008) Zr-TUD-1: a Lewis acidic, three-dimensional, mesoporous, zirconium-containing catalyst. Chem Eur J 14:961–972. https://doi.org/10.1002/chem.200700725 Dai LX, Tabata K, Suzuki E, Tatsumi T (2001) Synthesis and characterization of V-SBA-1 cubic mesoporous molecular sieves. Chem Mater 13:208–212. https://doi.org/10.1021/cm0005844 Kumar SN, Raman MS, Chandrasekaran J, Priya R, Chavali M, Suresh R (2016) Effect of post-growth annealing on the structural, optical and electrical properties of V2O5 nanorods and its fabrication, characterization of V2O5/p-Si junction diode. Mater Sci Semicond Process 41:497–507. https://doi.org/10.1016/j.mssp.2015.08.020 Silva-Rodrigo R, Calderon-Salas C, Melo-Banda JA, Dominguez JM, Vázquez-Rodríguez A (2004) Synthesis, characterization and comparison of catalytic properties of NiMo- and NiW/Ti-MCM-41 catalysts for HDS of thiophene and HVGO. Catal Today 98:123–129. https://doi.org/10.1016/j.cattod.2004.07.026 Guillard C, Lacroix M, Vrinat M, Breysse M, Mocaer B, Grimblot J, des Courieres T, Faure D (1990) Preparation, characterization and catalytic properties of unsupported vanadium sulphides. Catal Today 7:587–600. https://doi.org/10.1016/0920-5861(90)80010-M