MCM-41 supported quaternary ammonium ionic liquids as an effective heterogeneous catalyst for CO2 cycloaddition reaction

Qing Lu1, Shougui Wang2, Cailin Ji1, Guanghui Chen1, Jipeng Dong1, Fei Gao1
1College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
2Department of Chemical Engineering, Qingdao University of Science and Technology (Gaomi Campus), Gaomi, China

Tóm tắt

Ionic liquid immobilization is an effective means for preparing metal-free heterogeneous catalysts for the CO2 conversion. Herein, a series of quaternary ammonium ionic liquids functionalized MCM-41 heterogeneous catalysts, integrating hydrogen bond donors and nucleophilic ion sites, were prepared by a post-synthetic modification method for the CO2 cycloaddition reaction. The physicochemical properties of the catalysts were analyzed by XRD, EA, SEM, TEM, BET, FT-IR, TGA, NMR and XPS. The results show that the quaternary ammonium ionic liquids are successfully immobilized onto the MCM-41 molecular sieves. The obtained catalysts maintain an excellent pore structure and have the good thermal stability. The effects of catalytic conditions on the catalytic performance, the recyclability of the catalysts and their generalizability to epoxide substrates were systematically investigated. In addition, the catalytic performance was evaluated for low concentrations of CO2 (20% CO2, 80% N2). The synergy of multifunctional active sites makes the obtained materials exhibit the high catalytic activity without metals, co-catalysts and solvents. Furthermore, a possible mechanism for the conversion of CO2 to cyclic carbonate catalyzed by the MCM-41-N/CH3(1:3) was proposed.

Tài liệu tham khảo

A.W. Kleij, M. North, A. Urakawa, CO2 catalysis. Chemsuschem 10, 1036–1038 (2017). https://doi.org/10.1002/cssc.201700218 J.L. Wu, X. Liu, R.M. Zhang, J.B. Zhang, H.Y. Si, Z.J. Wu, A novel (CaO/CeO2)@CeO2 composite adsorbent based on microinjection titration-calcination strategy for CO2 adsorption. Chem. Eng. J. 454, 140485 (2023). https://doi.org/10.1016/j.cej.2022.140485 W.X. Cao, O. Zhuo, Y.J. Li, B.Z. Yuan, W.H. Luo, Selective adsorption of CO2/N2 promoted by polar ligand functional groups of metal–organic frameworks. J. Porous Mater. 29, 63–71 (2022). https://doi.org/10.1007/s10934-021-01141-w Z.Q. Yu, M. Shi, Recent advances in the electrochemically mediated chemical transformation of carbon dioxide. Chem. Commun. 58, 13539–13555 (2022). https://doi.org/10.1039/d2cc05242c T.K. Pal, D. De, P.K. Bharadwaj, Metal-organic frameworks as heterogeneous catalysts for the chemical conversion of carbon dioxide. Fuel 320, 123904 (2022). https://doi.org/10.1016/j.fuel.2022.123904 Y.C. Wang, Y.F. Liu, Q. Su, Y.N. Li, L.L. Deng, L. Dong, M.Q. Fu, S.F. Liu, W.G. Cheng, Poly(ionic liquid) materials tailored by carboxyl groups for the gas phase-conversion of epoxide and CO2 into cyclic carbonates. J. Carbondioxide Util. 60, 101976 (2022). https://doi.org/10.1016/j.jcou.2022.101976 R. Prajapati, N. Tsunoji, M. Bandyopadhyay, R. Bandyopadhyay, Hierarchical, amine functionalized silicoaluminophosphate molecular sieves for the synthesis of cyclic carbonate via CO2 utilization. J. Porous Mater. 30, 2087–2099 (2023). https://doi.org/10.1007/s10934-023-01488-2 N. Laiwattanapaisarn, A. Virachotikul, K. Phomphrai, Cycloaddition of carbon dioxide to epoxides by highly active constrained aluminum chloride complexes. Dalton Trans. 50, 11039–11048 (2021). https://doi.org/10.1039/D1DT01903A Y.M. Shen, W.L. Duan, M. Shi, Phenol and organic bases co-catalyzed chemical fixation of carbon dioxide with terminal epoxides to form cyclic carbonates. Adv. Synth. Catal. 345, 337–340 (2003). https://doi.org/10.1002/adsc.200390035 Q.Y. Yuan, P. Zhang, Y.L. Shi, D.H. Liu, Dual-ligand complex catalysts for the cycloaddition of propylene oxide and carbon dioxide. J. Mol. Struct. 1150, 329–334 (2017). https://doi.org/10.1016/j.molstruc.2017.08.056 Y. Chen, Y.J. Li, H. Wang, Z.F. Chen, Y.Z. Lei, Int. Facile construction of carboxyl-functionalized ionic polymer towards synergistic catalytic cycloaddition of carbon dioxide into cyclic carbonates. J. Mol. Sci. 23, 10879 (2022). https://doi.org/10.3390/ijms231810879 Y.T. Tong, R.H. Cheng, H. Dong, B.P. Liu, Efficient cycloaddition of CO2 and epoxides to cyclic carbonates using salen-based covalent organic framework as a heterogeneous catalyst. J. Porous Mater. 29, 1253–1263 (2022). https://doi.org/10.1007/s10934-022-01246-w J. Tapiador, E. García-Rojas, P. Leo, C. Martos, G. Calleja, G. Orcajo, Copper MOFs performance in the cycloaddition reaction of CO2 and epoxides. Microporous Mesoporous Mater. 361, 112741 (2023). https://doi.org/10.1016/j.micromeso.2023.112741 X. Fang, L. Yang, Z.B. Dai, D. Cong, D.Y. Zheng, T. Yu, R. Tu, S.L. Zhai, J.X. Yang, F.L. Song, H. Wu, W.Q. Deng, C.C. Liu, Poly(ionic liquid)s for photo-driven CO2 cycloaddition: electron donor–acceptor segments matter. Adv. Sci. 10, 2206687 (2023). https://doi.org/10.1002/advs.202206687 M. Smiglak, J.M. Pringle, X. Lu, L. Han, S. Zhang, H. Gao, D.R. MacFarlane, R.D. Rogers, Ionic liquids for energy, materials, and medicine. Chem. Commun. 50, 9228–9250 (2014). https://doi.org/10.1039/C4CC02021A V.B. Saptal, B.M. Bhanage, Current advances in heterogeneous catalysts for the synthesis of cyclic carbonates from carbon dioxide. Curr. Opin. Green Sust. 3, 1–10 (2017). https://doi.org/10.1016/j.cogsc.2016.10.006 D.N. Zheng, P. Ning, J.M. Jiang, F. Liu, L. Wang, J.L. Zhang, Effect of ionic liquids clusters microenvironment on cycloaddition reaction of carbon dioxide. J. Mol. Liq. 284, 68–74 (2019). https://doi.org/10.1016/j.molliq.2019.03.165 S.H. Lian, C.F. Song, Q.L. Liu, E.H. Duan, H.W. Ren, Y. Kitamura, Recent advances in ionic liquids-based hybrid processes for CO2 capture and utilization. J. Environ. Sci. 99, 281–295 (2021). https://doi.org/10.1016/j.jes.2020.06.034 W.L. Dai, B. Jin, S.L. Luo, X.B. Luo, X.M. Tu, C.T. Au, Functionalized phosphonium-based ionic liquids as efficient catalysts for the synthesis of cyclic carbonate from expoxides and carbon dioxide. Appl. Catal. A 470, 183–188 (2014). https://doi.org/10.1016/j.apcata.2013.10.060 D.Y. Kim, S. Subramanian, D. Thirion, Y. Songa, A. Jamalc, M.S. Otaibic, C.T. Yavuz, Quaternary ammonium salt grafted nanoporous covalent organic polymer for atmospheric CO2 fixation and cyclic carbonate formation. Catal. Today 356, 527–534 (2020). https://doi.org/10.1016/j.cattod.2020.03.050 B.F. Goodrich, J.C. Delafuente, B.E. Gurkan, D.J. Zadigian, E.A. Price, Y. Huang, J.F. Brennecke, Experimental measurements of amine-functionalized anion-tethered ionic liquids with carbon dioxide. Ind. Eng. Chem. Res. 50, 111–118 (2011). https://doi.org/10.1021/ie101688a Y.L. Wan, L. Wang, L.L. Wen, Amide-functionalized organic cationic polymers toward enhanced catalytic performance for conversion of CO2 into cyclic carbonates. J. Carbondioxide Util. 64, 102174 (2022). https://doi.org/10.1016/j.jcou.2022.102174 J. Peng, S. Wang, H.J. Yang, B.R. Ban, Z.D. Wei, L.H. Wang, B. Lei, Highly efficient fixation of carbon dioxide to cyclic carbonates with new multi-hydroxyl bis-(quaternary ammonium) ionic liquids as metal-free catalysts under mild conditions. Fuel 224, 481–488 (2018). https://doi.org/10.1016/j.fuel.2018.03.119 D. Jadav, D.K. Pandey, T. Patil, D.K. Singh, S. Dharaskar, R. Bandyopadhyay, N. Tsunoji, R. Kumar, M. Bandyopadhyay, Ordered silica matrices supported ionic liquids as highly efficient catalysts for fine chemical synthesis. J. Porous Mater. 29, 2003–2017 (2022). https://doi.org/10.1007/s10934-022-01312-3 Q. Li, W.L. Da, J. Mao, X.W. He, Y. Liu, Y. Xu, L.X. Yang, J.P. Zou, X.B. Luo, Facile integration of hydroxyl ionic liquid into Cr-MIL-101 as multifunctional heterogeneous catalyst for promoting the efficiency of CO2 conversion. Microporous Mesoporous Mater. 350, 112461 (2023). https://doi.org/10.1016/j.micromeso.2023.112461 Y. Wang, R.F. He, C. Wang, G. Li, Ionic liquids supported at MCM-41 for catalyzing CO2 into cyclic carbonates without co-catalyst. React. Kinet. Mech. Catal. 134, 823–835 (2021). https://doi.org/10.1007/s11144-021-02097-3 F. Adam, J.N. Appaturi, E.P. Ng, Halide aided synergistic ring opening mechanism of epoxides and their cycloaddition to CO2 using MCM-41-imidazolium bromide catalyst. J. Mol. Catal. A 386, 42–48 (2014). https://doi.org/10.1016/j.molcata.2014.02.008 S. Udayakumar, S.W. Park, D.W. Park, B.S. Choi, Immobilization of ionic liquid on hybrid MCM-41 system for the chemical fixation of carbon dioxide on cyclic carbonate. Catal. Commun. 9, 1563–1570 (2008). https://doi.org/10.1016/j.catcom.2008.01.001 A. Rehman, F. Saleem, F. Javed, A. Ikhlaq, S.W. Ahmad, A. Harvey, Recent advances in the synthesis of cyclic carbonates via CO2 cycloaddition to epoxides. J. Environ. Chem. Eng. 9, 105113 (2021). https://doi.org/10.1016/j.jece.2021.105113 W.G. Cheng, B.N. Xiao, J. Sun, K. Dong, P. Zhang, S.J. Zhang, F.T.T. Ng, Effect of hydrogen bond of hydroxyl-functionalized ammonium ionic liquids on cycloaddition of CO2. Tetrahedron Lett. 56, 1416–1419 (2015). https://doi.org/10.1016/j.tetlet.2015.01.174 S. Yue, H.L. Qu, X.X. Song, X.N. Feng, Novel hydroxyl-functionalized ionic liquids as efficient catalysts for the conversion of CO2 into cyclic carbonates under metal/halogen/cocatalyst/solvent-free conditions. New J. Chem. 46, 5881–5888 (2022). https://doi.org/10.1039/D2NJ00257D A. Jentys, K. Kleestorfer, H. Vinek, Concentration of surface hydroxyl groups on MCM-41. Microporous Mesoporous Mater. 27, 321–328 (1999). https://doi.org/10.1016/S1387-1811(98)00265-0 H. Chen, S.Y. Dong, Y.J. Zhang, P.Y. He, A comparative study on energy efficient CO2 capture using amine grafted solid sorbent: materials characterization, isotherms, kinetics and thermodynamics. Energy 239, 122348 (2022). https://doi.org/10.1016/j.energy.2021.122348 L. Muniandy, F. Adam, N.R.A. Rahman, E.P. Ng, Highly selective synthesis of cyclic carbonates via solvent free cycloaddition of CO2 and epoxides using ionic liquid grafted on rice husk derived MCM-41. Inorg. Chem. Commun. 104, 1–7 (2019). https://doi.org/10.1016/j.inoche.2019.03.012 X.W. Zhang, Y.Y. Huang, J. Yang, H.X. Gao, Y.Q. Huang, X. Luo, Z.W. Liang, P. Tontiwachwuthikul, Amine-based CO2 capture aided by acid-basic bifunctional catalyst: advancement of amine regeneration using metal modified MCM-41. Chem. Eng. J. 383, 123077 (2020). https://doi.org/10.1016/j.cej.2019.123077 S. Sharma, U.P. Singh, A.P. Singh, Synthesis of MCM-41 supported cobalt (II) complex for the formation of polyhydroquinoline derivatives. Polyhedron 199, 115102 (2021). https://doi.org/10.1016/j.poly.2021.115102 F. Adam, M.S. Batagarawa, Tetramethylguanidine-silica nanoparticles as an efficient and reusable catalyst for the synthesis of cyclic propylene carbonate from carbon dioxide and propylene oxide. Appl. Catal. A 454, 164–171 (2013). https://doi.org/10.1016/j.apcata.2012.12.009 M. Kida, Y. Jin, J. Nagao, Changes in the 13C NMR spectra of tetra-n-butylammonium chloride by clathrate hydration. Chem. Phys. 522, 233–237 (2019). https://doi.org/10.1016/j.chemphys.2019.03.010 R.J. Ramalingam, J.N. Appaturi, T. Pulingam, N. Ibrahim, H.A. Al-Lohedan, Synthesis, characterization and catalytic activity of ionic liquid mimic halides modified MCM-41 for solvent free synthesis of phenyl glycidyl carbonate. Mater. Chem. Phys. 233, 79–88 (2019). https://doi.org/10.1016/j.matchemphys.2019.05.045 S. Udayakumar, M.-K. Lee, H.-L. Shim, S.-W. Park, D.-W. Park, Imidazolium derivatives functionalized MCM-41 for catalytic conversion of carbon dioxide to cyclic carbonate. Catal. Commun. 10, 659–664 (2009). https://doi.org/10.1016/j.catcom.2008.11.017 W.L. Dai, P. Mao, Y. Liu, S.Q. Zhang, B. Li, L.X. Yang, X.B. Luo, J.P. Zou, Quaternary phosphonium salt-functionalized Cr-MIL-101: A bifunctional and efficient catalyst for CO2 cycloaddition with epoxides. J. Carbondioxide Util. 36, 295–305 (2020). https://doi.org/10.1016/j.jcou.2019.10.021 J.N. Appaturi, F. Adam, A facile and efficient synthesis of styrene carbonate via cycloaddition of CO2 to styrene oxide over ordered mesoporous MCM-41-Imi/Br catalyst. Appl. Catal. B 136–137, 150–159 (2013). https://doi.org/10.1016/j.apcatb.2013.01.049 F. Jutz, A. Buchard, M.R. Kember, S.B. Fredriksen, C.K. Williams, Mechanistic investigation and reaction kinetics of the low-pressure copolymerization of cyclohexene oxide and carbon dioxide catalyzed by a dizinc complex. J. Am. Chem. Soc. 133, 17395–17405 (2011). https://doi.org/10.1021/ja206352x L.Y. Zhao, N. Liu, H. Huang, X.F. Wang, X.L. Huang, Synthesis of propylene carbonate from carbon dioxide through high activity of magnesium oxide. J. Chem. Eng. Jpn. 52, 406–412 (2019). https://doi.org/10.1252/jcej.18we073 T. Chang, X.L. Yan, Y. Li, Y.J. Hao, X.Y. Fu, X.H. Liu, B. Panchal, S.J. Qin, Z. Zhu, Quaternary ammonium immobilized PAMAM as efficient catalysts for conversion of carbon dioxide. J. Carbondioxide Util. 58, 101913 (2022). https://doi.org/10.1016/j.jcou.2022.101913 Y. Qu, Y.F. Zhao, D.Z. Li, J.M. Sun, Task-specific ionic liquids for carbon dioxide absorption and conversion into value-added products. Curr. Opin. Green Sust. 34, 100599 (2022). https://doi.org/10.1016/j.cogsc.2022.100599 M.S. Liu, X. Wang, Y.C. Jiang, J.M. Sun, M. Arai, Hydrogen bond activation strategy for cyclic carbonates synthesis from epoxides and CO2: current state-of-the art of catalyst development and reaction analysis. Catal. Rev. 61, 214 (2019). https://doi.org/10.1080/01614940.2018.1550243 M. North, R. Pasquale, C. Young, Synthesis of cyclic carbonates from epoxides and CO2. Green Chem. 12, 1514–1539 (2010). https://doi.org/10.1039/C0GC00065E V. Caló, A. Nacci, A. Monopoli, A. Fanizzi, Cyclic carbonate formation from carbon dioxide and oxiranes in tetrabutylammonium halides as solvents and catalysts. Org. Lett. 4, 2561–2563 (2002). https://doi.org/10.1021/ol026189w D.H. Lan, Y.X. Gong, N.Y. Tan, S.S. Wu, J. Shen, K.C. Yao, B. Yi, C.T. Au, S.F. Yin, Multi-functionalization of GO with multi-cationic ILs as high efficient metal-free catalyst for CO2 cycloaddition under mild conditions. Carbon 127, 245–254 (2018). https://doi.org/10.1016/j.carbon.2017.11.007 J. Sun, S.J. Zhang, W.G. Cheng, J.Y. Ren, Hydroxyl-functionalized ionic liquid: a novel efficient catalyst for chemical fixation of CO2 to cyclic carbonate. Tetrahedron Lett. 49, 3588–3591 (2008). https://doi.org/10.1016/j.tetlet.2008.04.022 L.Q. Xiao, Y.M. Lai, R. Zhao, Q.Y. Song, J.Y. Cai, X.Y. Yin, Y.L. Zhao, L.X. Hou, Ionic conjugated polymers as heterogeneous catalysts for the cycloaddition of carbon dioxide to epoxides to form carbonates under solvent- and cocatalyst-free conditions. ChemPlusChem 87, e202200324 (2022). https://doi.org/10.1002/cplu.202200324