MAS, STMAS and DQMAS NMR Studies of the Thermal Transformation of Kaolinite

Applied Magnetic Resonance - Tập 44 - Trang 1081-1094 - 2013
Xiongchao Lin1, Keiko Ideta2, Jin Miyawaki2, Yonggang Wang1, Isao Mochida2, Seong-Ho Yoon2,3
1School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, People’s Republic of China
2Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, Japan
3Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka, Japan

Tóm tắt

Thermal transformations of kaolinite at different temperatures were monitored using X-ray diffraction (XRD), high-resolution solid-state nuclear magnetic resonance (800 MHz for 1H Larmor frequency) with single-pulse magic-angle spinning, double-quantum filter satellite-transition magic-angle spinning, and double-quantum homo-nuclear correlation under magic-angle spinning experiments. Results show that combined experiments clearly manifest the transitions of silicon and aluminum structures at different thermal treatment stages; and moreover, high magnetic field offers higher sensitivity and resolution, hereby the slim resonances are obtained successfully at less stringent conditions. The dehydroxylation process of kaolinite causes the presence of short-range order in metakaolinite, which is absence of XRD reflections. Particularly, the features of metakaolinite with high concentration of defects are found with dispersive aluminum coordinations; and further, the distorted tetrahedral aluminum is detected in kaolinite-derived mullite because of the locally disorganized structure. The framework structure of kaolinite-derived mullite is considered to be primarily formed by the tetrahedral aluminum bonding with octahedral aluminum. In addition, except for the primary limitation caused by potentially long relaxation time of sample, such approaches are applicable to obtain detailedly structural characteristics of aluminosilicate.

Tài liệu tham khảo

S.K. Giri, N.N. Das, G.C. Pradhan, Powder Technol. 214, 3 (2011) S. Ghosh, Z.Y. Wang, S. Kang, P.C. Bhowmik, B.S. Xing, Pedosphere 19, 1 (2009) C.Y. Chen, G.S. Lan, W.H. Tuan, J. Eur. Ceram. Soc. 20, 14–15 (2000) H.P. He, J.G. Guo, J.X. Zhu, P. Yuan, C. Hu, Spectrochim Acta A 60, 5 (2004) A.A. Ogacho, B.O. Aduda, F.W. Nyongesa, J. Mater. Sci. 38, 11 (2003) H. Schneider, J. Schreuer, B. Hildmann, J. Eur. Ceram. Soc. 28, 2 (2008) J.C. Taylor, I. Hinczak, C.E. Matulis, Powder Diffr. 15, 1 (2000) O. Font, N. Moreno, X. Querol, M. Izquierdo, E. Alvarez, S. Diez, J. Elvira, D. Antenucci, H. Nugteren, F. Plana, A. Lopez, P. Coca, F.G. Pena, Fuel 89, 10 (2010) D. Iuga, C. Morais, Z.H. Gan, D.R. Neuville, L. Cormier, D. Massiot, J. Am. Chem. Soc. 127, 33 (2005) A.R. Grimmer, H. Zanni, P. Sozzani (Eds.), Springer Verlag Berlin (1998) J. Skibsted, C. Hall, Cement Concrete Res. 38, 2 (2008) J.H. Baltisberger, Z. Xu, J.F. Stebbins, S.H. Wang, A. Pines, J. Am. Chem. Soc. 118, 30 (1996) K. Glock, O. Hirsch, P. Rehak, B. Thomas, C. Jager, J. Non-Cryst. Solids 232, 113 (1998) J. Klinowski, S.W. Carr, S.E. Tarling, P. Barnes, Nature 330, 6143 (1987) S.M. DePaul, M. Ernst, J.S. Shore, J.F. Stebbins, A. Pines, J. Phys. Chem. B 101, 16 (1997) K. Kanehashi, K. Saito, Energy Fuel 18, 6 (2004) P. Burchill, O.W. Howarth, B.J. Sword, Fuel 70, 3 (1991) L. Frydman, J.S. Harwood, J. Am. Chem. Soc. 117, 19 (1995) S. Antonijevic, S.E. Ashbrook, S. Biedasek, R.I. Walton, S. Wimperis, H.X. Yang, J. Am. Chem. Soc. 128, 24 (2006) Z.H. Gan, J. Am. Chem. Soc. 122, 13 (2000) T. Takahashi, S. Kashiwakura, K. Kanehashi, T. Nagasaka, Energy Fuel 23, 1178 (2009) J.P. Amoureux, A. Flambard, L. Delevoye, L. Montagne, Chem. Commun. 27, 3472 (2005) S. Ganapathy, L. Delevoye, J.P. Arnoureux, P.K. Madhu, Magn. Reson. Chem. 46, 10 (2008) T. Takahashi, K. Kanehashi, Y. Shimoikeda, T. Nemoto, K. Saito, J. Magn. Reson. 198, 2 (2009) J. Trebosc, J.P. Amoureux, Z.H. Gan, Solid State Nucl. Magn. Reson. 31, 1 (2007) M.A. Bernstein, L.A. Trimble, Magn. Reson. Chem. 32, 2 (1994) I. de Boer, L. Bosman, J. Raap, H. Oschkinat, H.J.M. de Groot, J. Magn. Reson. 157, 2 (2002) S.P. Brown, H.W. Spiess, Chem. Rev. 101, 12 (2001) N. Malicki, G. Mali, A.A. Quoineaud, P. Bourges, L.J. Simon, F. Thibault-Starzyk, C. Fernandez, Micropor. Mesopor. Mat. 129, 1–2 (2010) X.C. Lin, K. Ideta, J. Miyawaki, Y. Nishiyama, I. Mochida, S.H. Yoon, Magn. Reson. Chem. 50, 4 (2012) S. Lee, Y.J. Kim, H.S. Moon, J. Am. Ceram. Soc. 86, 1 (2003) X.C. Lin, K. Ideta, J. Miyawaki, H. Takebe, S.H. Yoon, I. Mochida, Energy Fuel 26, 4 (2012) J. Schneider, M.A. Cincotto, H. Panepucci, Cement Concrete Res. 31, 7 (2001) S.D. Wang, K.L. Scrivener, Cement Concrete Res. 33, 5 (2003) J.H. Kwak, J.Z. Hu, D.H. Kim, J. Szanyi, C.H.F. Peden, J. Catal. 251, 1 (2007) J.K. João Rocha, Phys. Chem. Miner. 17, 2 (1990) M. Pernpointner, L. Visscher, J. Chem. Phys. 114, 23 (2001) P. Mcmillan, B. Piriou, J. Non-Cryst. Solids 55, 2 (1983) M.J. Toplis, D.B. Dingwell, T. Lenci, Geochim. Cosmochim. Acta 61, 13 (1997) B.O. Mysen, D. Virgo, C.M. Scarfe, Am. Miner. 65, 690–710 (1980) B.O. Mysen, D. Virgo, I. Kushiro, Am. Miner. 66, 678–701 (1981) J.F. Stebbins, Z. Xu, Nature 390, 6655 (1997) W. Loewenstein, Am. Miner. 39, 92–96 (1954)