MAPK Cascades in Plant Microbiota Structure and Functioning
Tóm tắt
Từ khóa
Tài liệu tham khảo
Akum, F. N., Steinbrenner, J., Biedenkopf, D., Imani, J., & Kogel, K. H. (2015). The Piriformospora indica effector PIIN_08944 promotes the mutualistic Sebacinalean symbiosis. Frontiers in Plant Science, 6, 906.
Andreasson, E., Jenkins, T., Brodersen, P., Thorgrimsen, S., Petersen, N. H. T., Zhu, S., Qiu, J. L., Micheelsen, P., Rocher, A., Petersen, M., et al. (2005). The MAP kinase substrate MKS1 is a regulator of plant defense responses. The EMBO Journal, 24, 2579–2589.
Asai, T., Tena, G., Plotnikova, J., Willmann, M. R., Chiu, W. L., Gomez-Gomez, L., Boller, T., Ausubel, F. M., & Sheen, J. (2002). MAP kinase signalling cascade in Arabidopsis innate immunity. Nature, 415, 977–983.
Augustin, J. M., Kuzina, V., Andersen, S. B., & Bak, S. (2011). Molecular activities, biosynthesis and evolution of triterpenoid saponins. Phytochemistry, 72, 435–457.
Bai, Y., Müller, D. B., Srinivas, G., Garrido-Oter, R., Potthoff, E., Rott, M., Dombrowski, N., Münch, P. C., Spaepen, S., Remus-Emsermann, M., et al. (2015). Functional overlap of the Arabidopsis leaf and root microbiota. Nature, 528, 364–369.
Bemis, S. M., Lee, J. S., Shpak, E. D., & Torii, K. U. (2013). Regulation of floral patterning and organ identity by Arabidopsis ERECTA-family receptor kinase genes. Journal of Experimental Botany, 64, 5323–5333.
Bentham, A. R., De la Concepcion, J. C., Mukhi, N., Zdrzałek, R., Draeger, M., Gorenkin, D., Hughes, R. K., & Banfield, M. J. (2020). A molecular roadmap to the plant immune system. Journal of Biological Chemistry, 295, 14916–14935.
Berendsen, R. L., Vismans, G., Yu, K., Song, Y., de Jonge, R., Burgman, W. P., Burmølle, M., Herschend, J., Bakker, P. A. H. M., & Pieterse, C. M. J. (2018). Disease-induced assemblage of a plant-beneficial bacterial consortium. The ISME Journal, 12, 1496–1507.
Bergmann, D. C., Lukowitz, W., & Somerville, C. R. (2004). Stomatal development and pattern controlled by a MAPKK kinase. Science, 304, 1494–1497.
Bethke, G., Unthan, T., Uhrig, J. F., Pöschl, Y., Gust, A. A., Scheel, D., & Lee, J. (2009). Flg22 regulates the release of an ethylene response factor substrate from MAP kinase 6 in Arabidopsis thaliana via ethylene signaling. Proceedings of the National Academy of Sciences, 106, 8067–8072.
Bhandari, D. D., Lapin, D., Kracher, B., von Born, P., Bautor, J., Niefind, K., & Parker, J. E. (2019). An EDS1 heterodimer signalling surface enforces timely reprogramming of immunity genes in Arabidopsis. Nature Communications, 10, 772.
Bharath, P., Gahir, S., & Raghavendra, A. S. (2021). Abscisic acid-induced stomatal closure: An important component of plant defense against abiotic and biotic stress. Frontiers in Plant Science, 12, 615114.
Bi, G., Su, M., Li, N., Liang, Y., Dang, S., Xu, J., Hu, M., Wang, J., Zou, M., Deng, Y., et al. (2021). The ZAR1 resistosome is a calcium-permeable channel triggering plant immune signaling. Cell, 184, 3528–3541.
Bi, G., Zhou, Z., Wang, W., Li, L., Rao, S., Wu, Y., Zhang, X., Menke, F. L. H., Chen, S., & Zhou, J. M. (2018). Receptor-like cytoplasmic kinases directly link diverse pattern recognition receptors to the activation of mitogen-activated protein kinase cascades in Arabidopsis. The Plant Cell, 30, 1543–1561.
Boudsocq, M., Willmann, M. R., McCormack, M., Lee, H., Shan, L., He, P., Bush, J., Cheng, S. H., & Sheen, J. (2010). Differential innate immune signalling via Ca2+ sensor protein kinases. Nature, 464, 418–422.
Buckley, S., Brackin, R., Jämtgård, S., Näsholm, T., & Schmidt, S. (2020). Microdialysis in soil environments: Current practice and future perspectives. Soil Biology and Biochemistry, 143, 107743.
Bulgarelli, D., Rott, M., Schlaeppi, K., Loren, V., van Themaat, E., Ahmadinejad, N., Assenza, F., Rauf, P., Huettel, B., Reinhardt, R., Schmelzer, E., et al. (2012). Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature, 488, 91–95.
Bulgarelli, D., Schlaeppi, K., Spaepen, S., van Themaat, E. V. L., & Schulze-Lefert, P. (2013). Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology, 64, 807–838.
Cao, Y., Liang, Y., Tanaka, K., Nguyen, C. T., Jedrzejczak, R. P., Joachimiak, A., & Stacey, G. (2014). The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced complex with related kinase CERK1. eLife, 3, e03766.
Carvalhais, L. C., Dennis, P. G., Badri, D. V., Kidd, B. N., Vivanco, J. M., & Schenk, P. M. (2015). Linking jasmonic acid signaling, root exudates, and rhizosphere microbiomes. Molecular Plant-Microbe Interactions, 28, 1049–1058.
Castrillo, G., Teixeira, P. J. P. L., Paredes, S. H., Law, T. F., de Lorenzo, L., Feltcher, M. E., Finkel, O. M., Breakfield, N. W., Mieczkowski, P., Jones, C. D., et al. (2017). Root microbiota drive direct integration of phosphate stress and immunity. Nature, 543, 513–518.
Chai, J., Song, W., & Parker, J. E. (2023). New biochemical principles for NLR immunity in plants. Molecular Plant-Microbe Interactions, 36, 468–475.
Chang, M., Chen, H., Liu, F., & Fu, Z. Q. (2022). PTI and ETI: Convergent pathways with diverse elicitors. Trends in Plant Science, 27, 113–115.
Chapelle, E., Mendes, R., Bakker, P. A. H., & Raaijmakers, J. M. (2016). Fungal invasion of the rhizosphere microbiome. The ISME Journal, 10, 265–268.
Checker, V. G., Kushwaha, H. R., Kumari, P., & Yadav, S. (2018). Role of phytohormones in plant defense: Signaling and cross talk. In A. Singh & I. K. Singh (Eds.), Molecular aspects of plant–pathogen interaction (pp. 159–184). Springer.
Chen, T., Nomura, K., Wang, X., Sohrabi, R., Xu, J., Yao, L., Paasch, B. C., Ma, L., Kremer, J., Cheng, Y., et al. (2020). A plant genetic network for preventing dysbiosis in the phyllosphere. Nature, 580, 653–657.
Cheng, Z., Li, J. F., Niu, Y., Zhang, X. C., Woody, O. Z., Xiong, Y., Djonović, S., Millet, Y., Bush, J., McConkey, B. J., et al. (2015). Pathogen-secreted proteases activate a novel plant immune pathway. Nature, 521, 213–216.
Cheval, C., & Faulkner, C. (2018). Plasmodesmal regulation during plant–pathogen interactions. New Phytologist, 217, 62–67.
Choi, K., Khan, R., & Lee, S. W. (2021). Dissection of plant microbiota and plant–microbiome interactions. Journal of Microbiology, 59, 281–291.
Colaianni, N. R., Parys, K., Lee, H. S., Conway, J. M., Kim, N. H., Edelbacher, N., Mucyn, T. S., Madalinski, M., Law, T. F., Jones, C. D., Belkhadir, Y., & Dangl, J. L. (2021). A complex immune response to flagellin epitope variation in commensal communities. Cell Host & Microbe, 29, 635–649.
Cui, H., Tsuda, K., & Parker, J. E. (2015). Effector-triggered immunity: From pathogen perception to robust defense. Annual Review of Plant Biology, 66, 487–511.
DeFalco, T. A., & Zipfel, C. (2021). Molecular mechanisms of early plant pattern-triggered immune signaling. Molecular Cell, 81, 3449–3467.
Develey-Rivière, M., & Galiana, E. (2007). Resistance to pathogens and host developmental stage: A multifaceted relationship within the plant kingdom. New Phytologist, 175, 405–416.
Dongus, J. A., & Parker, J. E. (2021). EDS1 signalling: At the nexus of intracellular and surface receptor immunity. Current Opinion in Plant Biology, 62, 102039.
Feehan, J. M., Wang, J., Sun, X., Choi, J., Ahn, H. K., Ngou, B. P. M., Parker, J. E., & Jones, J. D. G. (2023). Oligomerization of a plant helper NLR requires cell-surface and intracellular immune receptor activation. Proceedings of the National Academy of Sciences, 120, e22104061210.
Förderer, A., Li, E., Lawson, A. W., Deng, Y., Sun, Y., Logemann, E., Zhang, X., Wen, J., Han, Z., Chang, J., et al. (2022). A wheat resistosome defines common principles of immune receptor channels. Nature, 610, 532–539.
Gantner, J., Ordon, J., Kretschmer, C., Guerois, R., & Stuttmann, J. (2019). An EDS1-SAG101 complex is essential for TNL-mediated immunity in Nicotiana benthamiana. The Plant Cell, 31, 2456–2474.
Gao, M., Liu, J., Bi, D., Zhang, Z., Cheng, F., Chen, S., & Zhang, Y. (2008). MEKK1, MKK1/MKK2 and MPK4 function together in a mitogen-activated protein kinase cascade to regulate innate immunity in plants. Cell Research, 18, 1190–1198.
Ge, Y. Y., Xiang, Q. W., Wagner, C., Zhang, D., Xie, Z. P., & Staehelin, C. (2016). The type 3 effector NopL of Sinorhizobium sp. strain NGR234 is a mitogen-activated protein kinase substrate. Journal of Experimental Botany, 67, 2483–2494.
Hacquard, S., Garrido-Oter, R., González, A., Spaepen, S., Ackermann, G., Lebeis, S., McHardy, A. C., Dangl, J. L., Knight, R., Ley, R., et al. (2015). Microbiota and host nutrition across plant and animal kingdoms. Cell Host & Microbe, 17, 603–616.
Han, L., Li, G. J., Yang, K. Y., Mao, G., Wang, R., Liu, Y., & Zhang, S. (2010). Mitogen-activated protein kinase 3 and 6 regulate Botrytis cinerea-induced ethylene production in Arabidopsis. Plant Journal, 64, 114–127.
Haney, C. H., Samuel, B. S., Bush, J., & Ausubel, F. M. (2015). Associations with rhizosphere bacteria can confer an adaptive advantage to plants. Nature Plants, 1, 15051.
Hassani, M. A., Durán, P., & Hacquard, S. (2018). Microbial interactions within the plant holobiont. Microbiome, 6, 58.
He, Z., Webster, S., & He, S. Y. (2022). Growth–defense trade-offs in plants. Current Biology, 32, R634–R639.
Huang, A. C., Jiang, T., Liu, Y. X., Bai, Y. C., Reed, J., Qu, B., Goossens, A., Nützmann, H. W., Bai, Y., & Osbourn, A. (2019). A specialized metabolic network selectively modulates Arabidopsis root microbiota. Science, 364, eaau6389.
Huang, S., Jia, A., Song, W., Hessler, G., Meng, Y., Sun, Y., Xu, L., Laessle, H., Jirschitzka, J., Ma, S., et al. (2022). Identification and receptor mechanism of TIR-catalyzed small molecules in plant immunity. Science, 377, eabq3297.
Huang, W., Wu, Z., Tian, H., Li, X., & Zhang, Y. (2021). Arabidopsis CALMODULIN-BINDING PROTEIN 60b plays dual roles in plant immunity. Plant Communications, 2, 100213.
Ichimura, K., Casais, C., Peck, S. C., Shinozaki, K., & Shirasu, K. (2006). MEKK1 is required for MPK4 activation and regulates tissue-specific and temperature-dependent cell death in Arabidopsis. Journal of Biological Chemistry, 281, 36969–36976.
Isidra-Arellano, M. C., Delaux, P. M., & Valdés-López, O. (2021). The phosphate starvation response system: Its role in the regulation of plant–microbe interactions. Plant and Cell Physiology, 62, 392–400.
Jacob, P., Kim, N. H., Wu, F., El-Kasmi, F., Chi, Y., Walton, W. G., Furzer, O. J., Lietzan, A. D., Sunil, S., Kempthorn, K., et al. (2021). Plant “helper” immune receptors are Ca2+-permeable nonselective cation channels. Science, 373, 420–425.
Jacobs, S., Zechmann, B., Molitor, A., Trujillo, M., Petutschnig, E., Lipka, V., Kogel, K. H., & Schäfer, P. (2011). Broad-spectrum suppression of innate immunity is required for colonization of Arabidopsis roots by the fungus Piriformospora indica. Plant Physiology, 156, 726–740.
Jalmi, S. K., & Sinha, A. K. (2022). Ambiguities of PGPR-induced plant signaling and stress management. Frontiers in Microbiology, 13, 899563.
Jia, A., Huang, S., Song, W., Wang, J., Meng, Y., Sun, Y., Xu, L., Laessle, H., Jirschitzka, J., Hou, J., et al. (2022). TIR-catalyzed ADP-ribosylation reactions produce signaling molecules for plant immunity. Science, 377, eabq8180.
Jiang, Y., & Ding, P. (2023). Calcium signaling in plant immunity: A spatiotemporally controlled symphony. Trends in Plant Science, 28, 74–89.
Jiao, X., Takishita, Y., Zhou, G., & Smith, D. L. (2021). Plant-associated rhizobacteria for biocontrol and plant growth enhancement. Frontiers in Plant Science, 12, 634796.
Kang, M. S., Hur, M., & Park, S. J. (2019). Rhizocompartments and environmental factors affect microbial composition and variation in native plants. Journal of Microbiology, 57, 550–561.
Kolbert, Z., Lindermayr, C., & Loake, G. J. (2021). The role of nitric oxide in plant biology: Current insights and future perspectives. Journal of Experimental Botany, 72, 777–780.
Komis, G., Šamajová, O., Ovečka, M., & Šamaj, J. (2018). Cell and developmental biology of plant mitogen-activated protein kinases. Annual Review of Plant Biology, 69, 237–265.
Kong, Q., Qu, N., Gao, M., Zhang, Z., Ding, X., Yang, F., Li, Y., Dong, O. X., Chen, S., Li, X., et al. (2012). The MEKK1–MKK1/MKK2–MPK4 kinase cascade negatively regulates immunity mediated by a mitogen-activated protein kinase kinase kinase in Arabidopsis. The Plant Cell, 24, 2225–2236.
Koprivova, A., Schuck, S., Jacoby, R. P., Klinkhammer, I., Welter, B., Leson, L., Martyn, A., Nauen, J., Grabenhorst, N., Mandelkow, J. F., et al. (2019). Root-specific camalexin biosynthesis controls the plant growth-promoting effects of multiple bacterial strains. Proceedings of the National Academy of Sciences, 116, 15735–15744.
Kosetsu, K., Matsunaga, S., Nakagami, H., Colcombet, J., Sasabe, M., Soyano, T., Takahashi, Y., Hirt, H., & Machida, Y. (2010). The MAP kinase MPK4 is required for cytokinesis in Arabidopsis thaliana. The Plant Cell, 22, 3778–3790.
Kus, J. V., Zaton, K., Sarkar, R., & Cameron, R. K. (2002). Age-related resistance in Arabidopsis is a developmentally regulated defense response to Pseudomonas syringae. The Plant Cell, 14, 479–490.
Kwak, M. J., Kong, H. G., Choi, K., Kwon, S. K., Song, J. Y., Lee, J., Lee, P. A., Choi, S. Y., Seo, M., Lee, H. J., et al. (2018). Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nature Biotechnology, 36, 1100–1109.
Lakshmanan, V., Kitto, S. L., Caplan, J. L., Hsueh, Y. H., Kearns, D. B., Wu, Y. S., & Bais, H. P. (2012). Microbe-associated molecular patterns-triggered root responses mediate beneficial rhizobacterial recruitment in Arabidopsis. Plant Physiology, 160, 1642–1661.
Lapin, D., Kovacova, V., Sun, X., Dongus, J. A., Bhandari, D., von Born, P., Bautor, J., Guarneri, N., Rzemieniewski, J., Stuttmann, J., Beyer, A., et al. (2019). A coevolved EDS1–SAG101–NRG1 module mediates cell death signaling by TIR-domain immune receptors. The Plant Cell, 31, 2430–2455.
Lassowskat, I., Böttcher, C., Eschen-Lippold, L., Scheel, D., & Lee, J. (2014). Sustained mitogen-activated protein kinase activation reprograms defense metabolism and phosphoprotein profile in Arabidopsis thaliana. Frontiers in Plant Science, 5, 554.
Lazcano, C., Boyd, E., Holmes, G., Hewavitharana, S., Pasulka, A., & Ivors, K. (2021). The rhizosphere microbiome plays a role in the resistance to soil-borne pathogens and nutrient uptake of strawberry cultivars under field conditions. Scientific Reports, 11, 3188.
Lebeis, S. L., Paredes, S. H., Lundberg, D. S., Breakfield, N., Gehring, J., McDonald, M., Malfatti, S., Glavina del Rio, T., Jones, C. D., Tringe, S. G., et al. (2015). Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science, 349, 860–864.
Lee, H., Seo, Y., Lee, J. H., Lee, S. E., Oh, S., Kim, J., Jung, S., Kim, H., Park, H., Kim, S., et al. (2022). Plasma membrane-localized plant immune receptor targets H+-ATPase for membrane depolarization to regulate cell death. New Phytologist, 233, 934–947.
Lee, J., Eschen-Lippold, L., Lassowskat, I., Böttcher, C., & Scheel, D. (2015). Cellular reprogramming through mitogen-activated protein kinases. Frontiers in Plant Science, 6, 940.
Lemanceau, P., Blouin, M., Muller, D., & Moënne-Loccoz, Y. (2017). Let the core microbiota be functional. Trends in Plant Science, 22, 583–595.
Li, B., Meng, X., Shan, L., & He, P. (2016). Transcriptional regulation of pattern-triggered immunity in plants. Cell Host & Microbe, 19, 641–650.
Li, G., Meng, X., Wang, R., Mao, G., Han, L., Liu, Y., & Zhang, S. (2012). Dual-level regulation of ACC synthase activity by MPK3/MPK6 cascade and its downstream WRKY transcription factor during ethylene induction in Arabidopsis. PLoS Genetics, 8, e1002767.
Li, J., & Wang, X. (2019). Phospholipase D and phosphatidic acid in plant immunity. Plant Science, 279, 45–50.
Li, L. S., Ying, J., Li, E., Ma, T., Li, M., Gong, L. M., Wei, G., Zhang, Y., & Li, S. (2021). Arabidopsis CBP60b is a central transcriptional activator of immunity. Plant Physiology, 186, 1645–1659.
Li, Q., Wang, C., & Mou, Z. (2020). Perception of damaged self in plants. Plant Physiology, 182, 1545–1565.
Lian, K., Gao, F., Sun, T., van Wersch, R., Ao, K., Kong, Q., Nitta, Y., Wu, D., Krysan, P., & Zhang, Y. (2018). MKK6 functions in two parallel MAP kinase cascades in immune signaling. Plant Physiology, 178, 1284–1295.
Liu, J., Huang, Y., Kong, L., Yu, X., Feng, B., Liu, D., Zhao, B., Mendes, G. C., Yuan, P., Ge, D., et al. (2020). The malectin-like receptor-like kinase LETUM1 modulates NLR protein SUMM2 activation via MEKK2 scaffolding. Nature Plants, 6, 1106–1115.
Liu, Y., & Zhang, S. (2004). Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. The Plant Cell, 16, 3386–3399.
Liu, Y., Zhong, X., Zhang, Z., Lan, J., Huang, X., Tian, H., Li, X., & Zhang, Y. (2021). Receptor-like kinases MDS1 and MDS2 promote SUMM2-mediated immunity. Journal of Integrative Plant Biology, 63, 277–282.
Lombardi, N., Vitale, S., Turrà, D., Reverberi, M., Fanelli, C., Vinale, F., Marra, R., Ruocco, M., Pascale, A., d’Errico, G., et al. (2018). Root exudates of stressed plants stimulate and attract Trichoderma soil fungi. Molecular Plant-Microbe Interactions, 31, 982–994.
Lu, Y., & Tsuda, K. (2021). Intimate association of PRR- and NLR-mediated signaling in plant immunity. Molecular Plant-Microbe Interactions, 34, 3–14.
Lubega, J., Umbreen, S., & Loake, G. J. (2021). Recent advances in the regulation of plant immunity by S-nitrosylation. Journal of Experimental Botany, 72, 864–872.
Lundberg, D. S., Lebeis, S. L., Paredes, S. H., Yourstone, S., Gehring, J., Malfatti, S., Tremblay, J., Engelbrektson, A., Kunin, V., Rio, T. G., et al. (2012). Defining the core Arabidopsis thaliana root microbiome. Nature, 488, 86–90.
Luo, L., Zhang, J., Ye, C., Li, S., Duan, S., Wang, Z., Huang, H., Liu, Y., Deng, W., Mei, X., et al. (2022). Foliar pathogen infection manipulates soil health through root exudate-modified rhizosphere microbiome. Microbiology Spectrum, 10, e02418-e2422.
Lv, S., Yang, Y., Yu, G., Peng, L., Zheng, S., Singh, S. K., Vílchez, J. I., Kaushal, R., Zi, H., Yi, D., et al. (2022). Dysfunction of histone demethylase IBM1 in Arabidopsis causes autoimmunity and reshapes the root microbiome. The ISME Journal, 16, 2513–2524.
Ma, S., Lapin, D., Liu, L., Sun, Y., Song, W., Zhang, X., Logemann, E., Yu, D., Wang, J., Jirschitzka, J., et al. (2020). Direct pathogen-induced assembly of an NLR immune receptor complex to form a holoenzyme. Science, 370, eabe3069.
Ma, X., Xu, G., He, P., & Shan, L. (2016). SERKing coreceptors for receptors. Trends in Plant Science, 21, 1017–1033.
Ma, Y., & Nicolet, J. (2023). Specificity models in MAPK cascade signaling. FEBS Open Bio, 13, 1177–1192.
Ma, Y., Walker, R. K., Zhao, Y., & Berkowitz, G. A. (2012). Linking ligand perception by PEPR pattern recognition receptors to cytosolic Ca2+ elevation and downstream immune signaling in plants. Proceedings of the National Academy of Sciences, 109, 19852–19857.
Ma, Z., Sun, Y., Zhu, X., Yang, L., Chen, X., & Miao, Y. (2022). Membrane nanodomains modulate formin condensation for actin remodeling in Arabidopsis innate immune responses. The Plant Cell, 34, 374–394.
Maier, B. A., Kiefer, P., Field, C. M., Hemmerle, L., Bortfeld-Miller, M., Emmenegger, B., Schäfer, M., Pfeilmeier, S., Sunagawa, S., Vogel, C. M., et al. (2021). A general non-self response as part of plant immunity. Nature Plants, 7, 696–705.
Mao, G., Meng, X., Liu, Y., Zheng, Z., Chen, Z., & Zhang, S. (2011). Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. The Plant Cell, 23, 1639–1653.
MAPK Group. (2002). Mitogen-activated protein kinase cascades in plants: A new nomenclature. Trends in Plant Science, 7, 301–308.
Martin, R., Qi, T., Zhang, H., Liu, F., King, M., Toth, C., Nogales, E., & Staskawicz, B. J. (2020). Structure of the activated ROQ1 resistosome directly recognizing the pathogen effector XopQ. Science, 370, eabd9993.
Masson-Boivin, C., & Sachs, J. L. (2018). Symbiotic nitrogen fixation by rhizobia — The roots of a success story. Current Opinion in Plant Biology, 44, 7–15.
Mendes, R., Kruijt, M., de Bruijn, I., Dekkers, E., van der Voort, M., Schneider, J. H. M., Piceno, Y. M., DeSantis, T. Z., Andersen, G. L., Bakker, P. A. H. M., et al. (2011). Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science, 332, 1097–1100.
Meng, X., Xu, J., He, Y., Yang, K. Y., Mordorski, B., Liu, Y., & Zhang, S. (2013). Phosphorylation of an ERF transcription factor by Arabidopsis MPK3/MPK6 regulates plant defense gene induction and fungal resistance. The Plant Cell, 25, 1126–1142.
Millet, Y. A., Danna, C. H., Clay, N. K., Songnuan, W., Simon, M. D., Werck-Reichhart, D., & Ausubel, F. M. (2010). Innate immune responses activated in Arabidopsis roots by microbe-associated molecular patterns. The Plant Cell, 22, 973–990.
Mittler, R., Zandalinas, S. I., Fichman, Y., & Van Breusegem, F. (2022). Reactive oxygen species signalling in plant stress responses. Nature Reviews Molecular Cell Biology, 23, 663–679.
Nakagami, H., Soukupová, H., Schikora, A., Zárský, V., & Hirt, H. (2006). A mitogen-activated protein kinase kinase kinase mediates reactive oxygen species homeostasis in Arabidopsis. Journal of Biological Chemistry, 281, 38697–38704.
Ngou, B. P. M., Ahn, H. K., Ding, P., & Jones, J. D. G. (2021). Mutual potentiation of plant immunity by cell-surface and intracellular receptors. Nature, 592, 110–115.
Ngou, B. P. M., Ding, P., & Jones, J. D. G. (2022). Thirty years of resistance: Zig-zag through the plant immune system. The Plant Cell, 34, 1447–1478.
Nguyen, N. H., Trotel-Aziz, P., Clément, C., Jeandet, P., Baillieul, F., & Aziz, A. (2022). Camalexin accumulation as a component of plant immunity during interactions with pathogens and beneficial microbes. Planta, 255, 116.
Nie, P., Li, X., Wang, S., Guo, J., Zhao, H., & Niu, D. (2017). Induced systemic resistance against Botrytis cinerea by Bacillus cereus AR156 through a JA/ET- and NPR1-dependent signaling pathway and activates PAMP-triggered immunity in Arabidopsis. Frontiers in Plant Science, 8, 238.
Nitta, Y., Qiu, Y., Yaghmaiean, H., Zhang, Q., Huang, J., Adams, K., & Zhang, Y. (2020). MEKK2 inhibits activation of MAP kinases in Arabidopsis. The Plant Journal, 103, 705–714.
Paasch, B. C., Sohrabi, R., Kremer, J. M., Nomura, K., Cheng, Y. T., Martz, J., Kvitko, B., Tiedje, J. M., & He, S. Y. (2023). A critical role of a eubiotic microbiota in gating proper immunocompetence in Arabidopsis. Nature Plants, 9, 1468–1480.
Pastorczyk, M., Kosaka, A., Piślewska-Bednarek, M., López, G., Frerigmann, H., Kułak, K., Glawischnig, E., Molina, A., Takano, Y., & Bednarek, P. (2020). The role of CYP71A12 monooxygenase in pathogen-triggered tryptophan metabolism and Arabidopsis immunity. New Phytologist, 225, 400–412.
Pattyn, J., Vaughan-Hirsch, J., & Van de Poel, B. (2021). The regulation of ethylene biosynthesis: A complex multilevel control circuitry. New Phytologist, 229, 770–782.
Petersen, K., Qiu, J. L., Lütje, J., Fiil, B. K., Hansen, S., Mundy, J., & Petersen, M. (2010). Arabidopsis MKS1 is involved in basal immunity and requires an intact N-terminal domain for proper function. PLoS ONE, 5, e14364.
Petersen, M., Brodersen, P., Naested, H., Andreasson, E., Lindhart, U., Johansen, B., Nielsen, H. B., Lacy, M., Austin, M. J., Parker, J. E., et al. (2000). Arabidopsis MAP Kinase 4 negatively regulates systemic acquired resistance. Cell, 103, 1111–1120.
Pfeilmeier, S., Petti, G. C., Bortfeld-Miller, M., Daniel, B., Field, C. M., Sunagawa, S., & Vorholt, J. A. (2021). The plant NADPH oxidase RBOHD is required for microbiota homeostasis in leaves. Nature Microbiology, 6, 852–864.
Plett, J. M., Daguerre, Y., Wittulsky, S., Vayssières, A., Deveau, A., Melton, S. J., Kohler, A., Morrell-Falvey, J. L., Brun, A., Veneault-Fourrey, C., et al. (2014). Effector MiSSP7 of the mutualistic fungus Laccaria bicolor stabilizes the Populus JAZ6 protein and represses jasmonic acid (JA) responsive genes. Proceedings of the National Academy of Sciences, 111, 8299–8304.
Pruitt, R. N., Locci, F., Wanke, F., Zhang, L., Saile, S. C., Joe, A., Karelina, D., Hua, C., Fröhlich, K., Wan, W. L., et al. (2021). The EDS1–PAD4–ADR1 node mediates Arabidopsis pattern-triggered immunity. Nature, 598, 495–499.
Qiu, J. L., Fiil, B. K., Petersen, K., Nielsen, H. B., Botanga, C. J., Thorgrimsen, S., Palma, K., Suarez-Rodriguez, M. C., Sandbech-Clausen, S., Lichota, J., et al. (2008a). Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus. The EMBO Journal, 27, 2214–2221.
Qiu, J. L., Zhou, L., Yun, B.-W., Nielsen, H. B., Fiil, B. K., Petersen, K., MacKinlay, J., Loake, G. J., Mundy, J., & Morris, P. C. (2008b). Arabidopsis mitogen-activated protein kinase kinases MKK1 and MKK2 have overlapping functions in defense signaling mediated by MEKK1, MPK4, and MKS1. Plant Physiology, 148, 212–222.
Quince, C., Walker, A. W., Simpson, J. T., Loman, N. J., & Segata, N. (2017). Shotgun metagenomics, from sampling to analysis. Nature Biotechnology, 35, 833–844.
Rastogi, G., Sbodio, A., Tech, J. J., Suslow, T. V., Coaker, G. L., & Leveau, J. H. J. (2012). Leaf microbiota in an agroecosystem: Spatiotemporal variation in bacterial community composition on field-grown lettuce. The ISME Journal, 6, 1812–1822.
Rayapuram, N., Bigeard, J., Alhoraibi, H., Bonhomme, L., Hesse, A. M., Vinh, J., Hirt, H., & Pflieger, D. (2018). Quantitative phosphoproteomic analysis reveals shared and specific targets of Arabidopsis mitogen-activated protein kinases (MAPKs) MPK3, MPK4, and MPK6. Molecular & Cellular Proteomics, 17, 61–80.
Ren, D., Liu, Y., Yang, K. Y., Han, L., Mao, G., Glazebrook, J., & Zhang, S. (2008). A fungal-responsive MAPK cascade regulates phytoalexin biosynthesis in Arabidopsis. Proceedings of the National Academy of Sciences, 105, 5638–5643.
Rossez, Y., Wolfson, E. B., Holmes, A., Gally, D. L., & Holden, N. J. (2015). Bacterial flagella: Twist and stick, or dodge across the kingdoms. PLOS Pathogens, 11, e1004483.
Roux, M. E., Rasmussen, M. W., Palma, K., Lolle, S., Regué, À. M., Bethke, G., Glazebrook, J., Zhang, W., Sieburth, L., Larsen, M. R., et al. (2015). The mRNA decay factor PAT1 functions in a pathway including MAP kinase 4 and immune receptor SUMM2. The EMBO Journal, 34, 593–608.
Rudrappa, T., Czymmek, K. J., Paré, P. W., & Bais, H. P. (2008). Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiology, 148, 1547–1556.
Saile, S. C., Ackermann, F. M., Sunil, S., Keicher, J., Bayless, A., Bonardi, V., Wan, L., Doumane, M., Stöbbe, E., Jaillais, Y., et al. (2021). Arabidopsis ADR1 helper NLR immune receptors localize and function at the plasma membrane in a phospholipid-dependent manner. New Phytologist, 232, 2440–2456.
Sewelam, N., Kazan, K., Thomas-Hall, S. R., Kidd, B. N., Manners, J. M., & Schenk, P. M. (2013). Ethylene response factor 6 is a regulator of reactive oxygen species signaling in Arabidopsis. PLoS ONE, 8, e70289.
Siegel-Hertz, K., Edel-Hermann, V., Chapelle, E., Terrat, S., Raaijmakers, J. M., & Steinberg, C. (2018). Comparative microbiome analysis of a Fusarium wilt suppressive soil and a Fusarium wilt conducive soil from the Châteaurenard region. Frontiers in Microbiology, 9, 568.
Sohrabi, R., Huh, J. H., Badieyan, S., Rakotondraibe, L. H., Kliebenstein, D. J., Sobrado, P., & Tholl, D. (2015). In planta variation of volatile biosynthesis: An alternative biosynthetic route to the formation of the pathogen-induced volatile homoterpene DMNT via triterpene degradation in Arabidopsis roots. The Plant Cell, 27, 874–890.
Sohrabi, R., Paasch, B. C., Liber, J. A., & He, S. Y. (2023). Phyllosphere microbiome. Annual Review of Plant Biology, 74, 539–568.
Sportes, A., Hériché, M., Boussageon, R., Noceto, P. A., van Tuinen, D., Wipf, D., & Courty, P. E. (2021). A historical perspective on mycorrhizal mutualism emphasizing arbuscular mycorrhizas and their emerging challenges. Mycorrhiza, 31, 637–653.
Stegmann, M., Monaghan, J., Smakowska-Luzan, E., Rovenich, H., Lehner, A., Holton, N., Belkhadir, Y., & Zipfel, C. (2017). The receptor kinase FER is a RALF-regulated scaffold controlling plant immune signaling. Science, 355, 287–289.
Strehmel, N., Hoehenwarter, W., Mönchgesang, S., Majovsky, P., Krüger, S., Scheel, D., & Lee, J. (2017). Stress-related mitogen-activated protein kinases stimulate the accumulation of small molecules and proteins in Arabidopsis thaliana root exudates. Frontiers in Plant Science, 8, 1292.
Stringlis, I. A., Proietti, S., Hickman, R., Van Verk, M. C., Zamioudis, C., & Pieterse, C. M. J. (2018a). Root transcriptional dynamics induced by beneficial rhizobacteria and microbial immune elicitors reveal signatures of adaptation to mutualists. The Plant Journal, 93, 166–180.
Stringlis, I. A., Yu, K., Feussner, K., de Jonge, R., Van Bentum, S., Van Verk, M. C., Berendsen, R. L., Bakker, P. A. H. M., Feussner, I., & Pieterse, C. M. J. (2018b). MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health. Proceedings of the National Academy of Sciences, 115, E5213–E5222.
Su, J., Yang, L., Zhu, Q., Wu, H., He, Y., Liu, Y., Xu, J., Jiang, D., & Zhang, S. (2018). Active photosynthetic inhibition mediated by MPK3/MPK6 is critical to effector-triggered immunity. PLoS Biology, 16, e2004122.
Su, J., Zhang, M., Zhang, L., Sun, T., Liu, Y., Lukowitz, W., Xu, J., & Zhang, S. (2017). Regulation of stomatal immunity by interdependent functions of a pathogen-responsive MPK3/MPK6 cascade and abscisic acid. The Plant Cell, 29, 526–542.
Su, S. H., Bush, S. M., Zaman, N., Stecker, K., Sussman, M. R., & Krysan, P. (2013). Deletion of a tandem gene family in Arabidopsis: Increased MEKK2 abundance triggers autoimmunity when the MEKK1–MKK1/2–MPK4 signaling cascade is disrupted. The Plant Cell, 25, 1895–1910.
Suarez-Rodriguez, M. C., Adams-Phillips, L., Liu, Y., Wang, H., Su, S. H., Jester, P. J., Zhang, S., Bent, A. F., & Krysan, P. J. (2007). MEKK1 is required for flg22-induced MPK4 activation in Arabidopsis plants. Plant Physiology, 143, 661–669.
Sun, T., Nitta, Y., Zhang, Q., Wu, D., Tian, H., Lee, J. S., & Zhang, Y. (2018). Antagonistic interactions between two MAP kinase cascades in plant development and immune signaling. EMBO Reports, 19, e45324.
Sun, T., & Zhang, Y. (2022). MAP kinase cascades in plant development and immune signaling. EMBO Reports, 23, e53817.
Takagi, M., Nagai, S., Kaminaka, H., Akimitsu, K., Shirasu, K., & Ichimura, K. (2022). Simultaneous mutations in SMN1 and SUMM2 fully suppress the dwarf and autoimmune phenotypes of Arabidopsis mpk4 mutant. Plant Signaling & Behavior, 17, 2046412.
Tang, J., Wu, D., Li, X., Wang, L., Xu, L., Zhang, Y., Xu, F., Liu, H., Xie, Q., Dai, S., Coleman-Derr, D., et al. (2022). Plant immunity suppression via PHR1–RALF–FERONIA shapes the root microbiome to alleviate phosphate starvation. The EMBO Journal, 41, e109102.
Teixeira, P. J. P. L., Colaianni, N. R., Law, T. F., Conway, J. M., Gilbert, S., Li, H., Salas-González, I., Panda, D., Del Risco, N. M., Finkel, O. M., et al. (2021). Specific modulation of the root immune system by a community of commensal bacteria. Proceedings of the National Academy of Sciences, 118, e2100678118.
Thoms, D., Chen, M. Y., Liu, Y., Moreira, Z. M., Luo, Y., Song, S., Wang, N. R., & Haney, C. H. (2023). Innate immunity can distinguish beneficial from pathogenic rhizosphere microbiota. BioRxiv. https://doi.org/10.1101/2023.01.07.523123
Thulasi Devendrakumar, K., Li, X., & Zhang, Y. (2018). MAP kinase signalling: Interplays between plant PAMP- and effector-triggered immunity. Cellular and Molecular Life Sciences, 75, 2981–2989.
Tian, H., Wu, Z., Chen, S., Ao, K., Huang, W., Yaghmaiean, H., Sun, T., Xu, F., Zhang, Y., Wang, S., Li, X., & Zhang, Y. (2021). Activation of TIR signalling boosts pattern-triggered immunity. Nature, 598, 500–503.
Toju, H., Peay, K. G., Yamamichi, M., Narisawa, K., Hiruma, K., Naito, K., Fukuda, S., Ushio, M., Nakaoka, S., Onoda, Y., et al. (2018). Core microbiomes for sustainable agroecosystems. Nature Plants, 4, 247–257.
Torres, M. A., Jones, J. D. G., & Dangl, J. L. (2006). Reactive oxygen species signaling in response to pathogens. Plant Physiology, 141, 373–378.
Tsai, H. H., Wang, J., Geldner, N., & Zhou, F. (2023). Spatiotemporal control of root immune responses during microbial colonization. Current Opinion in Plant Biology, 74, 102369.
Tzipilevich, E., Russ, D., Dangl, J. L., & Benfey, P. N. (2021). Plant immune system activation is necessary for efficient root colonization by auxin-secreting beneficial bacteria. Cell Host & Microbe, 29, 1507–1520.
Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Le Van, A., & Dufresne, A. (2015). The importance of the microbiome of the plant holobiont. New Phytologist, 206, 1196–1206.
Vismans, G., van Bentum, S., Spooren, J., Song, Y., Goossens, P., Valls, J., Snoek, B. L., Thiombiano, B., Schilder, M., Dong, L., et al. (2022). Coumarin biosynthesis genes are required after foliar pathogen infection for the creation of a microbial soil-borne legacy that primes plants for SA-dependent defenses. Scientific Reports, 12, 22473.
Voges, M. J. E. E. E., Bai, Y., Schulze-Lefert, P., & Sattely, E. S. (2019). Plant-derived coumarins shape the composition of an Arabidopsis synthetic root microbiome. Proceedings of the National Academy of Sciences, 116, 12558–12565.
Wan, L., Essuman, K., Anderson, R. G., Sasaki, Y., Monteiro, F., Chung, E. H., Osborne Nishimura, E., DiAntonio, A., Milbrandt, J., Dangl, J. L., et al. (2019a). TIR domains of plant immune receptors are NAD+-cleaving enzymes that promote cell death. Science, 365, 799–803.
Wan, W. L., Fröhlich, K., Pruitt, R. N., Nürnberger, T., & Zhang, L. (2019b). Plant cell surface immune receptor complex signaling. Current Opinion in Plant Biology, 50, 18–28.
Wang, H., Ngwenyama, N., Liu, Y., Walker, J. C., & Zhang, S. (2007). Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis. The Plant Cell, 19, 63–73.
Wang, J., Hu, M., Wang, J., Qi, J., Han, Z., Wang, G., Qi, Y., Wang, H. W., Zhou, J. M., & Chai, J. (2019a). Reconstitution and structure of a plant NLR resistosome conferring immunity. Science, 364, eaav5870.
Wang, J., Song, W., & Chai, J. (2023a). Structure, biochemical function, and signaling mechanism of plant NLRs. Molecular Plant, 16, 75–95.
Wang, J., Wang, J., Hu, M., Wu, S., Qi, J., Wang, G., Han, Z., Qi, Y., Gao, N., Wang, H. W., et al. (2019b). Ligand-triggered allosteric ADP release primes a plant NLR complex. Science, 364, eaav5868.
Wang, K., Auzane, A., & Overmyer, K. (2022a). The immunity priming effect of the Arabidopsis phyllosphere resident yeast Protomyces arabidopsidicola strain C29. Frontiers in Microbiology, 13, 956018.
Wang, P., Du, Y., Zhao, X., Miao, Y., & Song, C. P. (2013). The MPK6–ERF6–ROS-responsive cis-acting element7/GCC box complex modulates oxidative gene transcription and the oxidative response in Arabidopsis. Plant Physiology, 161, 1392–1408.
Wang, Y., Li, X., Fan, B., Zhu, C., & Chen, Z. (2021). Regulation and function of defense-related callose deposition in plants. International Journal of Molecular Sciences, 22, 2393.
Wang, Y., Wu, Y., Zhang, H., Wang, P., & Xia, Y. (2022b). Arabidopsis MAPKK kinases YODA, MAPKKK3, and MAPKKK5 are functionally redundant in development and immunity. Plant Physiology, 190, 206–210.
Wang, Y., Xue, X., Zhu, J. K., & Dong, J. (2016). Demethylation of ERECTA receptor genes by IBM1 histone demethylase affects stomatal development. Development, 143, 4452–4461.
Wang, Y., Zhang, H., Wang, P., Zhong, H., Liu, W., Zhang, S., Xiong, L., Wu, Y., & Xia, Y. (2023b). Arabidopsis EXTRA-LARGE G PROTEIN 1 (XLG1) functions together with XLG2 and XLG3 in PAMP-triggered MAPK activation and immunity. Journal of Integrative Plant Biology, 65, 825–837.
Wen, T., Yuan, J., He, X., Lin, Y., Huang, Q., & Shen, Q. (2020). Enrichment of beneficial cucumber rhizosphere microbes mediated by organic acid secretion. Horticulture Research, 7, 154.
Widmann, C., Gibson, S., Jarpe, M. B., & Johnson, G. L. (1999). Mitogen-activated protein kinase: Conservation of a three-kinase module from yeast to human. Physiological Reviews, 79, 143–180.
Williams, A., Langridge, H., Straathof, A. L., Fox, G., Muhammadali, H., Hollywood, K. A., Xu, Y., Goodacre, R., & de Vries, F. T. (2021). Comparing root exudate collection techniques: An improved hybrid method. Soil Biology and Biochemistry, 161, 108391.
Xu, J., Meng, J., Meng, X., Zhao, Y., Liu, J., Sun, T., Liu, Y., Wang, Q., & Zhang, S. (2016). Pathogen-responsive MPK3 and MPK6 reprogram the biosynthesis of indole glucosinolates and their derivatives in Arabidopsis immunity. The Plant Cell, 28, 1144–1162.
Yamaguchi, Y., Huffaker, A., Bryan, A. C., Tax, F. E., & Ryan, C. A. (2010). PEPR2 is a second receptor for the Pep1 and Pep2 peptides and contributes to defense responses in Arabidopsis. The Plant Cell, 22, 508–522.
Yan, H., Zhao, Y., Shi, H., Li, J., Wang, Y., & Tang, D. (2018). BRASSINOSTEROID-SIGNALING KINASE1 phosphorylates MAPKKK5 to regulate immunity in Arabidopsis. Plant Physiology, 176, 2991–3002.
Yang, F., Zhang, J., Zhang, H., Ji, G., Zeng, L., Li, Y., Yu, C., Fernando, W. G. D., & Chen, W. (2020). Bacterial blight induced shifts in endophytic microbiome of rice leaves and the enrichment of specific bacterial strains with pathogen antagonism. Frontiers in Plant Science, 11, 963.
Yu, K., Liu, Y., Tichelaar, R., Savant, N., Lagendijk, E., van Kuijk, S. J. L., Stringlis, I. A., van Dijken, A. J. H., Pieterse, C. M. J., Bakker, P. A. H. M., et al. (2019a). Rhizosphere-associated Pseudomonas suppress local root immune responses by gluconic acid-mediated lowering of environmental pH. Current Biology, 29, 3913–3920.
Yu, K., Pieterse, C. M. J., Bakker, P. A. H. M., & Berendsen, R. L. (2019b). Beneficial microbes going underground of root immunity. Plant, Cell & Environment, 42, 2860–2870.
Yu, X., Feng, B., He, P., & Shan, L. (2017). From chaos to harmony: Responses and signaling upon microbial pattern recognition. Annual Review of Phytopathology, 55, 109–137.
Yuan, J., Zhao, J., Wen, T., Zhao, M., Li, R., Goossens, P., Huang, Q., Bai, Y., Vivanco, J. M., Kowalchuk, G. A., et al. (2018). Root exudates drive the soil-borne legacy of aboveground pathogen infection. Microbiome, 6, 156.
Yuan, M., Cai, B., & Xin, X. F. (2023). Plant immune receptor pathways as a united front against pathogens. PLoS Pathogens, 19, e1011106.
Yuan, M., Jiang, Z., Bi, G., Nomura, K., Liu, M., Wang, Y., Cai, B., Zhou, J. M., He, S. Y., & Xin, X. F. (2021). Pattern-recognition receptors are required for NLR-mediated plant immunity. Nature, 592, 105–109.
Yun, H. S., Sul, W. J., Chung, H. S., Lee, J., & Kwon, C. (2023). Secretory membrane traffic in plant–microbe interactions. New Phytologist, 237, 53–59.
Zhalnina, K., Louie, K. B., Hao, Z., Mansoori, N., da Rocha, U. N., Shi, S., Cho, H., Karaoz, U., Loqué, D., Bowen, B. P., et al. (2018). Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nature Microbiology, 3, 470–480.
Zhang, C., Lopez, M. S., Dar, A. C., LaDow, E., Finkbeiner, S., Yun, C. H., Eck, M. J., & Shokat, K. M. (2013). Structure-guided inhibitor design expands the scope of analog-sensitive kinase technology. ACS Chemical Biology, 8, 1931–1938.
Zhang, L., Chen, X. J., Lu, H. B., Xie, Z. P., & Staehelin, C. (2011). Functional analysis of the type 3 effector nodulation outer protein L (NopL) from Rhizobium sp. NGR234. Journal of Biological Chemistry, 286, 32178–32187.
Zhang, M., & Zhang, S. (2022). Mitogen-activated protein kinase cascades in plant signaling. Journal of Integrative Plant Biology, 64, 301–341.
Zhang, Z., Liu, Y., Huang, H., Gao, M., Wu, D., Kong, Q., & Zhang, Y. (2017). The NLR protein SUMM2 senses the disruption of an immune signaling MAP kinase cascade via CRCK3. EMBO Reports, 18, 292–302.
Zhang, Z., Wu, Y., Gao, M., Zhang, J., Kong, Q., Liu, Y., Ba, H., Zhou, J., & Zhang, Y. (2012). Disruption of PAMP-induced MAP kinase cascade by a Pseudomonas syringae effector activates plant immunity mediated by the NB-LRR protein SUMM2. Cell Host & Microbe, 11, 253–263.
Zhao, W., Li, Y., Yang, C., Yang, Y., & Hu, Y. (2023). Rhizosphere microbial community and metabolites of susceptible and resistant tobacco cultivars to bacterial wilt. Journal of Microbiology, 61, 389–402.
Zhao, Y. B., Liu, M. X., Chen, T. T., Ma, X., Li, Z. K., Zheng, Z., Zheng, S. R., Chen, L., Li, Y. Z., Tang, L. R., et al. (2022). Pathogen effector AvrSr35 triggers Sr35 resistosome assembly via a direct recognition mechanism. Science Advances, 8, 5108.
Zhou, J., Wang, X., He, Y., Sang, T., Wang, P., Dai, S., Zhang, S., & Meng, X. (2020). Differential phosphorylation of the transcription factor WRKY33 by the protein kinases CPK5/CPK6 and MPK3/MPK6 cooperatively regulates camalexin biosynthesis in Arabidopsis. The Plant Cell, 32, 2621–2638.