MAP kinase signalling cascade in Arabidopsis innate immunity

Nature - Tập 415 Số 6875 - Trang 977-983 - 2002
Tsuneaki Asai1, Guillaume Tena1, Joulia Plotnikova1, Matthew R. Willmann1, Wan-Ling Chiu1, Lourdes Gómez‐Gómez2, Thomas Boller3, Frederick M. Ausubel1, Jen Sheen1
1Department of Genetics, and Department of Molecular Biology, Harvard Medical School, Massachusetts General Hospital, Boston, 02114, Massachusetts, USA
2Instituto de Desarrollo Regional, Sección de Biotecnología, Campus Universitario s/n, Albacete, E-02071, Spain
3Friedrich Miescher-Institute, PO Box 2543, Basel, CH-4002, Switzerland

Tóm tắt

Từ khóa


Tài liệu tham khảo

Boller, T. Chemoperception of microbial signals in plant cells. Annu. Rev. Plant Physiol. Plant. Mol. Biol. 46, 189–214 (1995).

Aderem, A. & Ulevitch, R. J. Toll-like receptors in the induction of the innate immune response. Nature 406, 782–787 (2000).

Meindl, T., Boller, T. & Felix, G. The bacterial elicitor flagellin activates its receptor in tomato cells according to the address-message concept. Plant Cell 12, 1783–1794 (2000).

Khush, R. S. & Lemaitre, B. Genes that fight infection. Trends Genet. 16, 442–449 (2000).

Cohn, J., Sessa, G. & Martin, G. B. Innate immunity in plants. Curr. Opin. Immunol. 13, 55–62 (2001).

Dangl, J. L. & Jones, J. D. G. Plant pathogens and integrated defence responses to infection. Nature 411, 826–833 (2001).

Nurnberger, T. & Scheel, D. Signal transmission in plant immune response. Trends Plant Sci. 6, 372–379 (2001).

Staskawicz, B. J., Mudgett, M. B., Dangl, J. L. & Galan, J. E. Common and contrasting themes of plant and animal diseases. Science 292, 2285–2289 (2001).

Samakovlis, C., Asling, B., Boman, H. G., Gateff, E. & Hultmark, D. In vitro induction of cecropin genes—an immune response in a Drosophila blood cell line. Biochem. Biophys. Res. Commun. 188, 1169–1175 (1992).

Felix, G., Duran, J., Volko, S. & Boller, T. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J. 18, 265–276 (1999).

Hayashi, F. et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410, 1099–1103 (2001).

Gomez-Gomez, L. & Boller, T. FLS2: An LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol. Cell 5, 1003–1011 (2000).

Gomez-Gomez, L., Felix, G. & Boller, T. A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana. Plant J. 18, 277–284 (1999).

Romeis, T. et al. Rapid Avr9- and Cf9-dependent activation of MAP kinases in tobacco cell cultures and leaves: Convergence of resistance gene, elicitor, wound, and salicylate responses. Plant Cell 11, 273–287 (1999).

Blume, B., Nurnberger, T., Nass, N. & Scheel, D. Receptor-mediated increase in cytoplasmic free calcium required for activation of pathogen defense in parsley. Plant Cell 12, 1425–1440 (2000).

Hirt, H. & Scheel, D. in Results and Problems in Cell Differentiation: MAP Kinases in Plant Signal Transduction (ed. Hirt, H.) 85–93 (Springer, Heidelberg, 2000).

Zhang, S. & Klessig, D. F. MAPK cascades in plant defense signaling. Trends Plant Sci. 6, 520–527 (2001).

Romeis, T. Protein kinases in the plant defence response. Curr. Opin. Plant Biol. 4, 407–414 (2001).

Tena, G., Asai, T., Chiu, W.-L. & Sheen, J. Plant MAP kinase signaling cascades. Curr. Opin. Plant Biol. 4, 392–400 (2001).

Ligterink, W., Kroj, T., Zurnieden, U., Hirt, H. & Scheel, D. Receptor-mediated activation of a MAP kinase in pathogen defense in plants. Science 276, 2054–2057 (1997).

Zhang, S. & Klessig, D. F. Resistance gene N-mediated de novo synthesis and activation of a tobacco mitogen-activated protein kinase by tobacco mosaic virus infection. Proc. Natl Acad. Sci. USA 95, 7433–7438 (1998).

Zhang, S., Du, H. & Klessig, D. F. Activation of the tobacco SIP kinase by both a cell-wall-derived carbohydrate elicitor and purified proteinaceous elicitins from Phytophthora spp. Plant Cell 10, 435–449 (1998).

Nuhse, T. S., Peck, S. C., Hirt, H. & Boller, T. Microbial elicitors induce activation and dual phosphorylation of the Arabidopsis thaliana MAPK6. J. Biol. Chem. 275, 7521–7526 (2000).

Cardinale, F. et al. Differential activation of four specific MAPK pathways by distinct elicitors. J. Biol. Chem. 275, 36734–36740 (2000).

Lee, J., Klessig, D. F. & Nurnberger, T. A. A harpin binding site in tobacco plasma membranes mediates activation of the pathogenesis-related gene HIN1 independent of extracellular calcium but dependent on mitogen-activated protein kinase activity. Plant Cell 13, 1079–1093 (2001).

Sheen, J. Signal transduction in maize and Arabidopsis mesophyll protoplasts. Plant Physiol. (in the press).

Durrant, W. E., Rowland, O., Piedras, P., Hammond-Kosack, K. E. & Jones, J. D. G. cDNA-AFLP reveals a striking overlap in race-specific resistance and wound response gene expression profiles. Plant Cell 12, 963–977 (2000).

Maleck, K. et al. The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nature Genet. 26, 403–410 (2000).

Schenk, P. M. et al. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc. Natl Acad. Sci. USA 97, 11655–11660 (2000).

Asai, T. et al. Fumonisin B1-induced cell death in Arabidopsis protoplasts requires jasmonate-, ethylene-, and salicylate-dependent signaling pathways. Plant Cell 12, 1823–1835 (2000).

Glazebrook, J. Genes controlling expression of defense responses in Arabidopsis—2001 status. Curr. Opin. Plant Biol. 4, 301–308 (2001).

Eulgem, T., Rushton, P. J., Robatzek, S. & Somssich, I. E. The WRKY superfamily of plant transcription factors. Trends Plant Sci. 5, 199–206 (2000).

Eulgem, T., Rushton, P. J., Schmeizer, E., Hahlbrock, K. & Somssich, I. E. Early nuclear events in plant defence signalling: rapid gene activation by WRKY transcription factors. EMBO J. 18, 4689–4699 (1999).

Du, L. & Chen, Z. Identification of genes encoding receptor-like protein kinases as possible targets of pathogen- and salicylic acid-induced WRKY DNA-binding proteins in Arabidopsis. Plant J. 24, 837–847 (2000).

Kovtun, Y., Chiu, W.-L., Tena, G. & Sheen, J. Function analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc. Natl Acad. Sci. USA 97, 2940–2945 (2000).

Kovtun, Y., Chiu, W.-L., Zeng, W. & Sheen, J. Suppression of auxin signal transduction by a MAPK cascade in higher plants. Nature 395, 716–720 (1998).

Mizoguchi, T., Ichimura, K., Yoshida, R. & Shinozaki, K. in Results and Problems in Cell Differentiation: MAP Kinases in Plant Signal Transduction (ed. Hirt, H.) 29–38 (Springer, Heidelberg, 2000).

Jouannic, S. et al. Plant MAP kinase kinase kinase structure, classification and evolution. Gene 233, 1–11 (1999).

Xiang, C., Han, P., Lutziger, I., Wang, K. & Oliver, D. J. A mini binary vector series for plant transformation. Plant Mol. Biol. 40, 711–717 (1999).

Peck, S. C. et al. Directed proteomics identifies a plant-specific protein rapidly phosphorylated in response to bacterial and fungal elicitors. Plant Cell 13, 1467–1475 (2001).

Yang, K.-Y., Liu, Y. & Zhang, S. Activation of a mitogen-activated protein kinase pathway is involved in disease resistance in tobacco. Proc. Natl Acad. Sci. USA 98, 741–746 (2001).

Petersen, M. et al. Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance. Cell 103, 1111–1120 (2000).

Frye, C. A., Tang, D. & Innes, R. W. Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proc. Natl Acad. Sci. USA 98, 373–378 (2001).

Swiderski, M. R. & Innes, R. W. The Arabidopsis PBS1 resistance gene encodes a member of a novel protein kinase subfamily. Plant J. 26, 101–112 (2001).

Madhani, H. D. & Fink, G. R. The riddle of MAP kinase signalling specificity. Trends Genet. 14, 151–155 (1998).

Patharkar, O. R. & Cushman, J. C. A stress-induced calcium-dependent protein kinase from Mesembryanthemum crystallinum phosphorylates a two-component pseudo-response regulator. Plant J. 24, 679–691 (2000).