M-quantile models with application to poverty mapping
Tóm tắt
Từ khóa
Tài liệu tham khảo
Battese GE, Harter RM and Fuller WA (1988). An error-components model for prediction of county op areas using survey and satellite data. J Am Stat Assoc 83(401): 28–36
Betti G (2003). Poverty and inequality mapping in Albania: final report. World Bank and INSTAT (mimeo), Washington DC and Tirana
Bigman D, Dercon S, Guillaume D and Lambotte M (2000). Community targeting for poverty reduction in Burkina Faso. World Bank Econ Rev 14(1): 167–93
Chambers R and Dunstan R (1986). Estimating distribution functions from survey data. Biometrika 73(3): 597–604
Chambers R, Dorfman AH (2003) Transformed variables in survey sampling. S3RI Methodology Working Papers, M03/21, Southampton Statistical Sciences Research Institute, University of Southampton, UK
Chambers R and Tzavidis N (2006). M-quantile models for small area estimation. Biometrika 93(2): 255–68
Chandra H and Chambers R (2005). Comparing EBLUP and C-EBLUP for small area estimation. Stat Transit 7(3): 637–48
Elbers C, Lanjouw J and Lanjouw P (2003). Mio-level estimation of poverty and inequality. Econometrica 71(1): 355–64
Fay RE and Herriot RA (1979). Estimates of income for small places: an application of James-Stein procedures to census data. J Am Stat Assoc 74(366): 269–77
Foster J, Greer J and Thorbecke E (1984). A class of decomposable poverty measures. Econometrica 52(3): 761–66
Rao JNK (2003). Small area estimation. Wiley, New York
Royall RM and Cumberland WG (1978). Variance estimation in finite population sampling. J Am Stat Assoc 73(362): 351–58
Tzavidis N, Chambers R (2007) Robust prediction of small area means and distributions. Working paper (available upon request)
World Bank (2003) Albania poverty assessment. World Bank Report No. 26213-AL, Washington DC