Lysosomal acid lipase regulates fatty acid channeling in brown adipose tissue to maintain thermogenesis
Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids - Tập 1863 - Trang 467-478 - 2018
Tài liệu tham khảo
Goldstein, 1975, Role of lysosomal acid lipase in the metabolism of plasma low density lipoprotein. Observations in cultured fibroblasts from a patient with cholesteryl ester storage disease, J. Biol. Chem., 250, 8487, 10.1016/S0021-9258(19)40786-2
Brown, 1976, Receptor-mediated control of cholesterol metabolism, Science, 191, 150, 10.1126/science.174194
Grumet, 2016, Lysosomal acid lipase hydrolyzes retinyl ester and affects retinoid turnover, J. Biol. Chem., 291, 17977, 10.1074/jbc.M116.724054
Anderson, 1993, In situ localization of the genetic locus encoding the lysosomal acid lipase/cholesteryl esterase (LIPA) deficient in Wolman disease to chromosome 10q23.2-q23.3, Genomics, 15, 245, 10.1006/geno.1993.1052
Du, 2001, Lysosomal acid lipase-deficient mice: depletion of white and brown fat, severe hepatosplenomegaly, and shortened life span, J. Lipid Res., 42, 489, 10.1016/S0022-2275(20)31157-3
Du, 1998, Targeted disruption of the mouse lysosomal acid lipase gene: long-term survival with massive cholesteryl ester and triglyceride storage, Hum. Mol. Genet., 7, 1347, 10.1093/hmg/7.9.1347
Sloan, 1972, Enzyme deficiency in cholesteryl ester storage disease, J. Clin. Invest., 51, 1923, 10.1172/JCI106997
Bernstein, 2013, Cholesteryl ester storage disease: review of the findings in 135 reported patients with an underdiagnosed disease, J. Hepatol., 58, 1230, 10.1016/j.jhep.2013.02.014
Aguisanda, 2017, Targeting Wolman disease and cholesteryl ester storage disease: disease pathogenesis and therapeutic development, Curr. Chem. Genom. Transl. Med., 11, 1, 10.2174/2213988501711010001
Radovic, 2016, Lysosomal acid lipase regulates VLDL synthesis and insulin sensitivity in mice, Diabetologia, 59, 1743, 10.1007/s00125-016-3968-6
Cannon, 2004, Brown adipose tissue: function and physiological significance, Physiol. Rev., 84, 277, 10.1152/physrev.00015.2003
Marzetti, 2016, Integrated control of brown adipose tissue, Heart Metab., 69, 9
Nedergaard, 2001, Life without UCP1: mitochondrial, cellular and organismal characteristics of the UCP1-ablated mice, Biochem. Soc. Trans., 29, 756, 10.1042/bst0290756
Shabalina, 2008, Within brown-fat cells, UCP1-mediated fatty acid-induced uncoupling is independent of fatty acid metabolism, Biochim. Biophys. Acta, 1777, 642, 10.1016/j.bbabio.2008.04.038
Hoeke, 2016, Role of brown fat in lipoprotein metabolism and atherosclerosis, Circ. Res., 118, 173, 10.1161/CIRCRESAHA.115.306647
Christoffolete, 2004, Mice with targeted disruption of the Dio2 gene have cold-induced overexpression of the uncoupling protein 1 gene but fail to increase brown adipose tissue lipogenesis and adaptive thermogenesis, Diabetes, 53, 577, 10.2337/diabetes.53.3.577
Zimmermann, 2004, Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase, Science, 306, 1383, 10.1126/science.1100747
Nielsen, 2014, Dissecting adipose tissue lipolysis: molecular regulation and implications for metabolic disease, J. Mol. Endocrinol., 52, R199, 10.1530/JME-13-0277
Scheja, 2016, Metabolic interplay between white, beige, brown adipocytes and the liver, J. Hepatol., 64, 1176, 10.1016/j.jhep.2016.01.025
Bartelt, 2011, Brown adipose tissue activity controls triglyceride clearance, Nat. Med., 17, 200, 10.1038/nm.2297
Harms, 2013, Brown and beige fat: development, function and therapeutic potential, Nat. Med., 19, 1252, 10.1038/nm.3361
Berbee, 2015, Brown fat activation reduces hypercholesterolaemia and protects from atherosclerosis development, Nat. Commun., 6, 6356, 10.1038/ncomms7356
Khedoe, 2015, Brown adipose tissue takes up plasma triglycerides mostly after lipolysis, J. Lipid Res., 56, 51, 10.1194/jlr.M052746
Sachdev, 2016, Novel role of a triglyceride-synthesizing enzyme: DGAT1 at the crossroad between triglyceride and cholesterol metabolism, Biochim. Biophys. Acta, 1861, 1132, 10.1016/j.bbalip.2016.06.014
Ferrannini, 1988, The theoretical bases of indirect calorimetry: a review, Metabolism, 37, 287, 10.1016/0026-0495(88)90110-2
Prokesch, 2016, N-acetylaspartate catabolism determines cytosolic acetyl-CoA levels and histone acetylation in brown adipocytes, Sci. Rep., 6, 10.1038/srep23723
Chandak, 2010, Efficient phagocytosis requires triacylglycerol hydrolysis by adipose triglyceride lipase, J. Biol. Chem., 285, 20192, 10.1074/jbc.M110.107854
Schlager, 2017, Lysosomal lipid hydrolysis provides substrates for lipid mediator synthesis in murine macrophages, Oncotarget, 8, 40037, 10.18632/oncotarget.16673
Aune, 2013, Isolation and differentiation of stromal vascular cells to beige/brite cells, J. Vis. Exp., 73
Rosenbaum, 2010, Thiadiazole carbamates: potent inhibitors of lysosomal acid lipase and potential Niemann-Pick type C disease therapeutics, J. Med. Chem., 53, 5281, 10.1021/jm100499s
Nedergaard, 2001, UCP1: the only protein able to mediate adaptive non-shivering thermogenesis and metabolic inefficiency, Biochim. Biophys. Acta, 1504, 82, 10.1016/S0005-2728(00)00247-4
Nohr, 2017, Inflammation downregulates UCP1 expression in brown adipocytes potentially via SIRT1 and DBC1 interaction, Int. J. Mol. Sci., 18, 10.3390/ijms18051006
Sakamoto, 2013, Inflammation induced by RAW macrophages suppresses UCP1 mRNA induction via ERK activation in 10T1/2 adipocytes, Am. J. Phys. Cell Physiol., 304, C729, 10.1152/ajpcell.00312.2012
Yan, 2006, Macrophage-specific expression of human lysosomal acid lipase corrects inflammation and pathogenic phenotypes in lal−/− mice, Am. J. Pathol., 169, 916, 10.2353/ajpath.2006.051327
Stanford, 2013, Brown adipose tissue regulates glucose homeostasis and insulin sensitivity, J. Clin. Invest., 123, 215, 10.1172/JCI62308
Dijk, 2015, ANGPTL4 mediates shuttling of lipid fuel to brown adipose tissue during sustained cold exposure, elife, 4, 10.7554/eLife.08428
Zechner, 2017, Cytosolic lipolysis and lipophagy: two sides of the same coin, Nat. Rev. Mol. Cell Biol., 18, 671, 10.1038/nrm.2017.76
Ahmadian, 2011, Desnutrin/ATGL is regulated by AMPK and is required for a brown adipose phenotype, Cell Metab., 13, 739, 10.1016/j.cmet.2011.05.002
Schreiber, 2017, Cold-induced thermogenesis depends on ATGL-mediated lipolysis in cardiac muscle, but not brown adipose tissue, Cell Metab., 26, 753, 10.1016/j.cmet.2017.09.004
Marino, 2014, Regulation of autophagy by cytosolic acetyl-coenzyme A, Mol. Cell, 53, 710, 10.1016/j.molcel.2014.01.016
Martinez-Lopez, 2016, Autophagy in the CNS and periphery coordinate lipophagy and lipolysis in the brown adipose tissue and liver, Cell Metab., 23, 113, 10.1016/j.cmet.2015.10.008
Dallner, 2006, Beta3-adrenergic receptors stimulate glucose uptake in brown adipocytes by two mechanisms independently of glucose transporter 4 translocation, Endocrinology, 147, 5730, 10.1210/en.2006-0242
Golozoubova, 2001, Only UCP1 can mediate adaptive nonshivering thermogenesis in the cold, FASEB J., 15, 2048, 10.1096/fj.00-0536fje
Valayannopoulos, 2014, Sebelipase alfa over 52 weeks reduces serum transaminases, liver volume and improves serum lipids in patients with lysosomal acid lipase deficiency, J. Hepatol., 61, 1135, 10.1016/j.jhep.2014.06.022
Dubland, 2015, Lysosomal acid lipase: at the crossroads of normal and atherogenic cholesterol metabolism, Front. Cell Dev. Biol., 3, 3, 10.3389/fcell.2015.00003
Kersten, 2005, Regulation of lipid metabolism via angiopoietin-like proteins, Biochem. Soc. Trans., 33, 1059, 10.1042/BST0331059
Dijk, 2016, Regulation of lipid metabolism by angiopoietin-like proteins, Curr. Opin. Lipidol., 27, 249, 10.1097/MOL.0000000000000290
Bartelt, 2014, Adipose tissue browning and metabolic health, Nat. Rev. Endocrinol., 10, 24, 10.1038/nrendo.2013.204
Baratta, 2015, Reduced lysosomal acid lipase activity in adult patients with non-alcoholic fatty liver disease, EBioMedicine, 2, 750, 10.1016/j.ebiom.2015.05.018