Lymphangiogenesis and cancer metastasis
Tóm tắt
Từ khóa
Tài liệu tham khảo
Wen, P. Y., Black, P. M. & Loeffler, J. S. in Cancer. Principles and Practice of Oncology (eds De Vita, V. J., Helman, S. & Rosenberg, S. A.) 2655–2670 (Lippincott Williams & Wilkins, Philadelphia, 2001).
Fidler, I. J. in Cancer: Principles & Practice of Oncology (eds De Vita, V. J., Helman, S. & Rosenberg, S. A.) 135–152 (Lippincott–Raven Publishers, Philadelphia, 1997).
Stetler-Stevenson, W. G. & Kleiner Jr., D. E. in Cancer: Principles and Practice of Oncology (eds De Vita, V. J., Helman, S. & Rosenberg, S. A.) 123–136 (Lippincott Williams & Wilkins, Philadelphia, 2001).
Butler, T. P. & Gullino, P. M. Quantitation of cell shedding into efferent blood of mammary adenocarcinoma. Cancer Res. 35, 512–516 (1975).
Folkman, J. Seminars in Medicine of the Beth Israel Hospital, Boston. Clinical applications of research on angiogenesis. N. Engl. J. Med. 333, 1757–1763 (1995).
Kim, K. J. et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362, 841–844 (1993).
Millauer, B., Shawver, L. K., Plate, K. H., Risau, W. & Ullrich, A. Glioblastoma growth inhibited in vivo by a dominant negative Flk-1 mutant. Nature 367, 576–579 (1994).
Saleh, M., Stacker, S. A. & Wilks, A. F. Inhibition of growth of C6 glioma cells in vivo by expression of antisense vascular endothelial growth factor sequence. Cancer Res. 56, 393–401 (1996).
Weidner, N., Semple, J. P., Welch, W. R. & Folkman, J. Tumor angiogenesis and metastasis-correlation in invasive breast carcinoma. N. Engl. J. Med. 324, 1–8 (1991).
Clarijs, R., Ruiter, D. J. & de Waal, R. M. Lymphangiogenesis in malignant tumours: does it occur? J. Pathol. 193, 143–146 (2001).
Karpanen, T. & Alitalo, K. Lymphatic vessels as targets of tumor therapy. J. Exp. Med. 194, F37–F42 (2001).
Sleeman, J. P., Krishnan, J., Kirkin, V. & Baumann, P. Markers for the lymphatic endothelium: in search of the holy grail? Microsc. Res. Tech. 55, 61–69 (2001).
Oh, S.-J. et al. VEGF and VEGF-C: specific induction of angiogenesis and lymphangiogenesis in the differentiated avian chorioallantoic membrane. Dev. Biol. 188, 96–109 (1997).
Jeltsch, M. et al. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science 276, 1423–1425 (1997).Demonstration in vivo that overexpression of VEGFC induces the growth of pre-existing lymphatic vessels in the skin of transgenic mice.
Achen, M. G. et al. Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk-1) and VEGF receptor 3 (Flt-4). Proc. Natl Acad. Sci. USA 95, 548–553 (1998).Shows that VEGFD (previously described as a growth factor for fibroblasts – see reference 32 ) is a ligand for VEGFR2 and VEGFR3, thereby defining the subfamily of lymphangiogenic growth factors (which consists of VEGFD and VEGFC).
Mandriota, S. J. et al. Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J. 20, 672–682 (2001).Reports that expression of VEGFC in the Rip-Tag mouse model confers on islet-cell tumours the ability to spread to regional lymph nodes.
Skobe, M. et al. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nature Med. 7, 192–198 (2001).Shows that overexpression of VEGFC in a human tumour xenograft is capable of inducing lymphangiogenesis, which mediates lymphatic metastasis.
Veikkola, T. et al. Signalling via vascular endothelial growth factor receptor-3 is sufficient for lymphangiogenesis in transgenic mice. EMBO J. 20, 1223–1231 (2001).
Stacker, S. A. et al. VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nature Med. 7, 186–191 (2001).Shows the capacity of VEGFD to speed tumour growth by promoting angiogenesis. VEGFD also stimulated tumour lymphangiogenesis and lymphatic metastasis, which could be specifically inhibited with an anti-VEGFD monoclonal antibody. In this model, overexpression of VEGF caused an increase in tumour angiogenesis and growth, but did not stimulate lymphangiogenesis or the spread of cancer cells to the lymphatics.
Joukov, V. et al. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt-4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J. 15, 290–298 (1996).
Lee, J. et al. Vascular endothelial growth factor-related protein: a ligand and specific activator of the tyrosine kinase receptor Flt4. Proc. Natl Acad. Sci. USA 93, 1988–1992 (1996).
Joukov, V. et al. Proteolytic processing regulates receptor specificity and activity of VEGF-C. EMBO J. 16, 3898–3911 (1997).Demonstration that the lymphangiogenic factor VEGFC is processed by proteolysis to generate a form that binds receptors with high affinity and activates VEGFR2 and VEGFR3.
Kaipainen, A. et al. Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc. Natl Acad. Sci. USA 92, 3566–3570 (1995).
Enholm, B. et al. Comparison of VEGF, VEGF-B, VEGF-C and Ang-1 mRNA regulation by serum, growth factors, oncoproteins and hypoxia. Oncogene 14, 2475–2483 (1997).
Ristimaki, A., Narko, K., Enholm, B., Joukov, V. & Alitalo, K. Proinflammatory cytokines regulate expression of the lymphatic endothelial mitogen vascular endothelial growth factor-C. J. Biol. Chem. 273, 8413–8418 (1998).
Kukk, E. et al. VEGF-C receptor binding and pattern of expression with VEGFR-3 suggests a role in lymphatic vascular development. Development 122, 3829–3837 (1996).
Cao, Y. et al. Vascular endothelial growth factor C induces angiogenesis in vivo. Proc. Natl Acad. Sci. USA 95, 14389–14394 (1998).
Witzenbichler, B. et al. Vascular endothelial growth factor-C (VEGF-C/VEGF-2) promotes angiogenesis in the setting of tissue ischemia. Am. J. Pathol. 153, 381–394 (1998).
Pepper, M. S., Mandriota, S. J., Jeltsch, M., Kumar, V. & Alitalo, K. Vascular endothelial growth factor (VEGF)-C synergizes with basic fibroblast growth factor and VEGF in the induction of angiogenesis in vitro and alters endothelial cell extracellular proteolytic activity. J. Cell. Physiol. 177, 439–452 (1998).
Orlandini, M., Marconcini, L., Ferruzzi, R. & Oliviero, S. Identification of a c-fos-induced gene that is related to the platelet-derived growth factor/vascular endothelial growth factor family. Proc. Natl Acad. Sci. USA 93, 11675–11680 (1996).
Stacker, S. A. et al. Biosynthesis of vascular endothelial growth factor-D involves proteolytic processing which generates non-covalent homodimers. J. Biol. Chem. 274, 32127–32136 (1999).
Baldwin, M. E. et al. The specificity of receptor binding by vascular endothelial growth factor-D is different in mouse and man. J. Biol. Chem. 276, 19166–19171 (2001).
Marconcini, L. et al. c-fos-induced growth factor/vascular endothelial growth factor D induces angiogenesis in vivo and in vitro. Proc. Natl Acad. Sci. USA 96, 9671–9676 (1999).
Achen, M. G. et al. Localization of vascular endothelial growth factor-D in malignant melanoma suggests a role in tumour angiogenesis. J. Pathol. 193, 147–154 (2001).
Pajusola, K. et al. FLT4 receptor tyrosine kinase contains seven immunoglobulin-like loops and is expressed in multiple human tissues and cell lines. Cancer Res. 52, 5738–5743 (1992).
Galland, F. et al. The FLT4 gene encodes a transmembrane tyrosine kinase related to the vascular endothelial growth factor receptor. Oncogene 8, 1233–1240 (1993).
Pajusola, K. et al. Signalling properties of FLT4, a proteolytically processed receptor tyrosine kinase related to two VEGF receptors. Oncogene 9, 3545–3555 (1994).
Mäkinen, T. et al. Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO J. 20, 4762–4773 (2001).Shows that lymphatic endothelial cells can be isolated from preparations of primary microvascular endothelium using anti-VEGFR3 antibodies. Identifies signal-transduction pathways for growth, survival and migration in lymphatic endothelial cells.
Aselli, G. De Lacteibus sive Lacteis Venis, Quarto Vasorum Mesarai corum Genere novo invento (Mediolani, Milano, 1627).
Harvey, W. On the Motion of the Heart and Blood in Animals, 1628 (P. F. Collier & Son Company, New York; translated by Robert Willis, 1909–1914).
Partanen, T. A. et al. VEGF-C and VEGF-D expression in neuroendocrine cells and their receptor, VEGFR-3, in fenestrated blood vessels in human tissues. FASEB J. 14, 2087–2096 (2000).
Valtola, R. et al. VEGFR-3 and its ligand VEGF-C are associated with angiogenesis in breast cancer. Am. J. Pathol. 154, 1381–1390 (1999).
Breiteneder-Geleff, S. et al. Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries. Podoplanin as a specific marker for lymphatic endothelium. Am. J. Pathol. 154, 385–394 (1999).
Breiteneder-Geleff, S. et al. Podoplanin, novel 43-kd membrane protein of glomerular epithelial cells, is down-regulated in puromycin nephrosis. Am. J. Pathol. 151, 1141–1152 (1997).
Wigle, J. T. & Oliver, G. Prox1 function is required for the development of the murine lymphatic system. Cell 98, 769–778 (1999).
Prevo, R., Banerji, S., Ferguson, D. J., Clasper, S. & Jackson, D. G. Mouse LYVE-1 is an endocytic receptor for hyaluronan in lymphatic endothelium. J. Biol. Chem. 276, 19420–19430 (2001).Together with reference 97 , this study defines LYVE1 as a useful marker of the lymphatic endothelium.
Carreira, C. M. et al. LYVE-1 is not restricted to the lymph vessels: expression in normal liver blood sinusoids and down-regulation in human liver cancer and cirrhosis. Cancer Res. 61, 8079–8084 (2001).
Nibbs, R. J. et al. The β-chemokine receptor D6 is expressed by lymphatic endothelium and a subset of vascular tumors. Am. J. Pathol. 158, 867–877 (2001).
Kriehuber, E. et al. Isolation and characterization of dermal lymphatic and blood endothelial cells reveal stable and functionally specialized cell lineages. J. Exp. Med. 194, 797–808 (2001).
Karkkainen, M. J. et al. A model for gene therapy of human hereditary lymphedema. Proc. Natl Acad. Sci. USA 98, 12677–12682 (2001).
Schmelz, M. & Franke, W. W. Complexus adhaerentes, a new group of desmoplakin-containing junctions in endothelial cells: the syndesmos connecting retothelial cells of lymph nodes. Eur. J. Cell. Biol. 61, 274–289 (1993).
Turner, R. R., Beckstead, J. H., Warnke, R. A. & Wood, G. S. Endothelial cell phenotypic diversity. In situ demonstration of immunologic and enzymatic heterogeneity that correlates with specific morphologic subtypes. Am. J. Clin. Pathol. 87, 569–575 (1987).
Barsky, S. H., Baker, A., Siegal, G. P., Togo, S. & Liotta, L. A. Use of anti-basement membrane antibodies to distinguish blood vessel capillaries from lymphatic capillaries. Am. J. Surg. Pathol. 7, 667–677 (1983).
Partanen, T. A. et al. Endothelial growth factor receptors in human fetal heart. Circulation 100, 583–586 (1999).
Jussila, L. et al. Lymphatic endothelium and Kaposi's sarcoma spindle cells detected by antibodies against vascular endothelial growth factor receptor-3. Cancer Res. 58, 1599–1604 (1998).
Makinen, T. et al. Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO J. 20, 4762–4773 (2001).
Fisher, B. et al. Relation of number of positive axillary nodes to the prognosis of patients with primary breast cancer. An NSABP update. Cancer 52, 1551–1557 (1983).
Greenlee, R. T., Hill-Harmon, M. B., Murray, T. & Thun, M. Cancer statistics, 2001. CA Cancer J. Clin. 51, 15–36 (2001).
Wells, K. E. et al. Sentinel lymph node biopsy in melanoma of the head and neck. Plast. Reconstr. Surg. 100, 591–594 (1997).
Albertini, J. J. et al. Lymphatic mapping and sentinel node biopsy in the patient with breast cancer. JAMA 276, 1818–1822 (1996).
Albertini, J. J. et al. Intraoperative radio-lympho-scintigraphy improves sentinel lymph node identification for patients with melanoma. Ann. Surg. 223, 217–224 (1996).
Pepper, M. S. Lymphangiogenesis and tumor metastasis: more questions than answers. Lymphology 33, 144–147 (2000).
Leu, A. J., Berk, D. A., Lymboussaki, A., Alitalo, K. & Jain, R. K. Absence of functional lymphatics within a murine sarcoma: a molecular and functional evaluation. Cancer Res. 60, 4324–4327 (2000).
Witte, M. H., Way, D. L., Witte, C. L. & Bernas, M. in Regulation of Angiogenesis 65–112 (Birkhäuser Verlag, Basel, 1997).
Beasley, N. J. P. et al. Intratumoral lymphangiogenesis and lymph node metastasis in head and neck cancer. Cancer Res. 62, 1315–1320 (2002).
Padera, T. P. et al. Lymphatic metastasis in the absence of functional intratumor lymphatics. Science 296, 1883–1886 (2002).Shows that the intratumoral lymphatic vessels in an experimental tumour lack various functional characteristics in terms of supporting fluid transport. Provides support for the theory that lymphatic vessels at the periphery, rather than within the tumour, are responsible for metastasis.
Pepper, M. S. Lymphangiogenesis and tumor metastasis: myth or reality? Clin. Cancer Res. 7, 462–468 (2001).
Karpanen, T. et al. Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth. Cancer Res. 61, 1786–1790 (2001).
Skobe, M. et al. Concurrent induction of lymphangiogenesis, angiogenesis, and macrophage recruitment by vascular endothelial growth factor-C in melanoma. Am. J. Pathol. 159, 893–903 (2001).
Mattila, M. M., Ruohola, J. K., Karpanen, T., Jackson, D. G. & Härkönen, P. L. VEGF-C induced lymphangiogenesis is associated with lymph node metastasis in orthotopic MCF-7 tumours. Int. J. Cancer 98, 946–951 (2002).
He, Y. et al. Suppression of tumor lymphangiogenesis and lymph node metastasis by blocking vascular endothelial growth factor receptor 3 signaling. J. Natl Cancer. Inst. 94, 819–825 (2002).
Kadambi, A. et al. Vascular endothelial growth factor (VEGF)-C differentially affects tumor vascular function and leukocyte recruitment: role of VEGF-receptor 2 and host VEGF-A. Cancer Res. 61, 2404–2408 (2001).
Chang, Y. S. et al. Mosaic blood vessels in tumors: frequency of cancer cells in contact with flowing blood. Proc. Natl Acad. Sci. USA 97, 14608–14613 (2000).
Hashizume, H. et al. Openings between defective endothelial cells explain tumor vessel leakiness. Am. J. Pathol. 156, 1363–1380 (2000).
Kim, I. et al. Vascular endothelial growth factor expression of intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and E- selectin through nuclear factor-κB activation in endothelial cells. J. Biol. Chem. 276, 7614–7620 (2001).
Kubo, H. et al. Blockade of vascular endothelial growth factor receptor-3 signaling inhibits fibroblast growth factor-2-induced lymphangiogenesis in mouse cornea. Proc. Natl Acad. Sci. USA 99, 8868–8873 (2002).
Partanen, T. A., Alitalo, K. & Miettinen, M. Lack of lymphatic vascular specificity of vascular endothelial growth factor receptor 3 in 185 vascular tumors. Cancer 86, 2406–2412 (1999).
Kubo, H. et al. Involvement of vascular endothelial growth factor receptor-3 in maintenance of integrity of endothelial cell lining during tumor angiogenesis. Blood 96, 546–553 (2000).
Gerber, H.-P. et al. VEGF is required for growth and survival in neonatal mice. Development 126, 1149–1159 (1999).
Salven, P. et al. Vascular endothelial growth factors VEGF-B and VEGF-C are expressed in human tumors. Am. J. Pathol. 153, 103–108 (1998).
Achen, M. G. et al. The angiogenic and lymphangiogenic factor vascular endothelial growth factor-D exhibits a paracrine mode of action in cancer. Growth Factors 20, 99–107 (2002).
Niki, T. et al. Expression of vascular endothelial growth factors A, B, C, and D and their relationships to lymph node status in lung adenocarcinoma. Clin. Cancer Res. 6, 2431–2439 (2000).
O-charoenrat, P., Rhys-Evans, P. & Eccles, S. A. Expression of vascular endothelial growth factor family members in head and neck squamous cell carcinoma correlates with lymph node metastasis. Cancer 92, 556–568 (2001).
White, J. D. et al. Vascular endothelial growth factor-D expression is an independent prognostic marker for survival in colorectal carcinoma. Cancer Res. 62, 1669–1675 (2002).Recent report showing that VEGFD is an independent prognostic marker for survival in colorectal cancer. One of a number of studies showing a correlation of VEGFC and VEGFD expression with clinical parameters that are associated with cancer progression.
Achen, M. G. et al. Monoclonal antibodies to vascular endothelial growth factor-D block interactions with both VEGF receptor-2 and VEGF receptor-3. Eur. J. Biochem. 267, 2505–2515 (2000).
Mäkinen, T. et al. Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3. Nature Med. 7, 199–205 (2001).
Fong, T. A. T. et al. SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types. Cancer Res. 59, 99–106 (1999).
Wood, J. M. et al. PTK787/ZK 222584, a novel and potent inhibitor of vascular endothelial growth factor receptor tyrosine kinases, impairs vascular endothelial growth factor-induced responses and tumor growth after oral administration. Cancer Res. 60, 2178–2189 (2000).
Kirkin, V. et al. Characterization of indolinones which preferentially inhibit VEGF-C- and VEGF-D-induced activation of VEGFR-3 rather than VEGFR-2. Eur J. Biochem. 268, 5530–5540 (2001).
Enholm, B. et al. Adenoviral expression of vascular endothelial growth factor-C induces lymphangiogenesis in the skin. Circ. Res. 88, 623–629 (2001).
Makinen, T. et al. Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3. Nature Med. 7, 199–205 (2001).
Vasioukhin, V., Bowers, E., Bauer, C., Degenstein, L. & Fuchs, E. Desmoplakin is essential in epidermal sheet formation. Nature Cell Biol. 3, 1076–1085 (2001).
Homey, B., Muller, A. & Zlotnik, A. Chemokines: agents for the immunotherapy of cancer? Nature Rev. Immunol. 2, 175–184 (2002).
Banerji, S. et al. LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J. Cell Biol. 144, 789–801 (1999).
Jackson, D. G., Prevo, R., Clasper, S. & Banerji, S. LYVE-1, the lymphatic system and tumor lymphangiogenesis. Trends Immunol. 22, 317–321 (2001).
Sinzelle, E. et al. Intrapericardial lymphangioma with podoplanin immunohistochemical characterization of lymphatic endothelial cells. Histopathology 37, 93–94 (2000).
Weninger, W. et al. Expression of vascular endothelial growth factor receptor-3 and podoplanin suggests a lymphatic endothelial cell origin of Kaposi's sarcoma tumor cells. Lab. Invest. 79, 243–251 (1999).
Rodriguez-Niedenführ, M. et al. Prox1 is a marker of ectodermal placodes, endodermal compartments, lymphatic endothelium and lymphangioblasts. Anat. Embryol. 204, 399–406 (2001).
Folpe, A. L., Veikkola, T., Valtola, R. & Weiss, S. W. Vascular endothelial growth factor receptor-3 (VEGFR-3): a marker of vascular tumors with presumed lymphatic differentiation, including Kaposi's sarcoma, kaposiform and Dabska-type hemangioendotheliomas, and a subset of angiosarcomas. Mod. Pathol. 13, 180–185 (2000).
Kinoshita, J. et al. Clinical significance of vascular endothelial growth factor-C (VEGF-C) in breast cancer. Breast Cancer Res. Treat. 66, 159–164 (2001).
Hashimoto, I. et al. Vascular endothelial growth factor-C expression and its relationship to pelvic lymph node status in invasive cervical cancer. Br. J. Cancer 85, 93–97 (2001).
Akagi, K. et al. Vascular endothelial growth factor-C (VEGF-C) expression in human colorectal cancer tissues. Br. J. Cancer 83, 887–891 (2000).
George, M. L. et al. VEGF-A, VEGF-C, and VEGF-D in colorectal cancer progression. Neoplasia 3, 420–427 (2001).
Hirai, M. et al. Expression of vascular endothelial growth factors (VEGF-A/VEGF-1 and VEGF-C/VEGF-2) in postmenopausal uterine endometrial carcinoma. Gynecol. Oncol. 80, 181–188 (2001).
Kitadai, Y. et al. Clinicopathological significance of vascular endothelial growth factor (VEGF)-C in human esophageal squamous cell carcinomas. Int. J. Cancer 93, 662–666 (2001).
Yonemura, Y. et al. Role of vascular endothelial growth factor C expression in the development of lymph node metastasis in gastric cancer. Clin. Cancer. Res. 5, 1823–1829 (1999).
Ichikura, T., Tomimatsu, S., Ohkura, E. & Mochizuki, H. Prognostic significance of the expression of vascular endothelial growth factor (VEGF) and VEGF-C in gastric carcinoma. J. Surg. Oncol. 78, 132–137 (2001).
Kabashima, A., Maehara, Y., Kakeji, Y. & Sugimachi, K. Overexpression of vascular endothelial growth factor C is related to lymphogenous metastasis in early gastric carcinoma. Oncology 60, 146–150 (2001).
Komuro, H., Kaneko, S., Kaneko, M. & Nakanishi, Y. Expression of angiogenic factors and tumor progression in human neuroblastoma. J. Cancer Res. Clin. Oncol. 127, 739–743 (2001).
Ohta, Y. et al. VEGF and VEGF type C play an important role in angiogenesis and lymphangiogenesis in human malignant mesothelioma tumours. Br. J. Cancer 81, 54–61 (1999).
Kajita, T. et al. The expression of vascular endothelial growth factor C and its receptors in non-small cell lung cancer. Br. J. Cancer 85, 255–260 (2001).
Tang, R. F. et al. Overexpression of lymphangiogenic growth factor VEGF-C in human pancreatic cancer. Pancreas 22, 285–292 (2001).
Tsurusaki, T. et al. Vascular endothelial growth factor-C expression in human prostatic carcinoma and its relationship to lymph node metastasis. Br. J. Cancer 80, 309–313 (1999).
Bunone, G. et al. Expression of angiogenesis stimulators and inhibitors in human thyroid tumors and correlation with clinical pathological features. Am. J. Pathol. 155, 1967–1976 (1999).
Geng, L. et al. Inhibition of vascular endothelial growth factor receptor signaling leads to reversal of tumor resistance to radiotherapy. Cancer Res. 61, 2413–2419 (2001).
Gale, N. W. et al. Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning and only the latter role is rescued by angiopoietin-1. Dev. Cell (in the press).