Lyapunov exponents and a strange attractor for the damped nonlinear mathieu equation

Archive of Applied Mechanics - Tập 61 - Trang 49-56 - 1991
S. D. Kisliakov1, A. A. Popov1
1Department of Applied Mechanics, Higher Institute of Architecture and Civil Engineering (VIAS), Sofia, Bulgaria

Tóm tắt

A single-degree-of-freedom nonlinear parametrically excited oscillator is considered. Such oscillators provide models for mechanical systems such as shells and plates under periodical load. Chaotic motions and a strange attractor are found to exist applying the theory of Lyapunov exponents. Some difficulties in practical application of the computational procedure for Lyapunov exponents are discussed. Three particular zones for different values of the excitation coefficient are shown to exist, with different type of long-term behavior.

Tài liệu tham khảo

Lorenz, E.: Deterministic non-periodic flow. J. Atmos. Sci. 20 (1963) 130–141 Holmes, P.; Moon, F.: Strange attractors and chaos in nonlinear mechanics. Trans. ASME J. Appl. Mech. 50 (1983) 1021–1032 Dowell, E.: Chaotic oscillations in mechanical systems. Comp. Mech. 3 (1988) 199–216 Thompson, J.; Stewart, H.: Nonlinear dynamics and chaos. London: Wiley 1986 Guckenheiner, J.; Holmes, P.: Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Berlin, Heidelberg, Tokyo, New York: Springer 1983 Lichtenberg, A.; Lieberman, M.: Regular and stochastic motion. Berlin, Heidelberg, Tokyo, New York: Springer 1983 Grundmann, H.: Zur dynamischen Stabilität des schwach gekrümmten zylindrischen Schalenfeldes. Ing. Arch. 39 (1970) 261–272 Kisliakov, S.: Parametererregte Schwingungen eines schwach gekrümmten zylindrischen Schalenfeldes. Theor. and Appl. Mech. 1 (1977) 26–34 Kisliakov, S.: Some problems in the theory of dynamic stability for deformable systems. Adv. Mech. 5 (1982) 3–29 Kisliakov, S.: Strange attractors and parametrically excited chaotic motions of thin shells. In: Proc. Int. Conf. Nonlinear Mechanics, pp. 1038–1043. Beijing: Science Press 1985 Izrailev, F.: Rabinovich, M.; Ugodnokov, A.: Approximate description of three-dimensional dissipative systems with stochastic behavior, Phys. Lett./A 86 (1981) 321–325 Wolf, A.; Swift, J.; Swinney, J.; Vastano, J.: Determining Lyapunov exponents from time series Physica/D 16 (1985) 285–317 Froeschlé, C.: The Lyapunov characteristic exponents and, applications. J. Méchanique Théor. Appl., Numéro Spécial (1984) 101–132 Benettin, G.; Galgani, L.; Giorgilli, A.; Strelcyn, J.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems. A method for computing all of them. Meccanica 15 (1980) 21–30 Horozov, E.: Private communication. Sofia (1987) Farmer, J.; Ott, E.; Yorke, J.: The dimension of chaotic attractors. Physica/D 7 (1983) 153–180 Haken, H.: At least one Lyapunov exponent vanishes if the trajectory of an attractor does not contain a fixed point. Phys. Lett./A 94 (1983) 71–72