Lyapunov dimension formula for the global attractor of the Lorenz system

G.A. Leonov1, N.V. Kuznetsov1,2, N.A. Korzhemanova1, D.V. Kusakin1
1Faculty of Mathematics and Mechanics, St. Petersburg State University, 198504 Peterhof, St. Petersburg, Russia
2Department of Mathematical Information Technology, University of Jyväskylä, 40014 Jyväskylä, Finland

Tài liệu tham khảo

Boichenko, 2005 Brezetskyi, 2015, Rare and hidden attractors in van der Pol-Duffing oscillators, Eur Phys J Spec Top, 224, 1459, 10.1140/epjst/e2015-02471-2 Celikovsky, 1994, Bilinear systems and chaos, Kybernetika, 30, 403 Chen, 1999, Yet another chaotic attractor, Int J Bifurcat Chaos, 9, 1465, 10.1142/S0218127499001024 Chueshov, 2002 Constantin, 1985, Attractors representing turbulent flows, Mem Am Math Soc, 53 Doering, 1995, On the shape and dimension of the lorenz attractor, Dyn Stabil Syst, 10, 255 Douady, 1980, Dimension de Hausdorff des attracteurs, CR Acad Sci Paris, Ser A (in French), 290, 1135 Eden, 1989 Eden, 1989, Local Lyapunov exponents and a local estimate of Hausdorff dimension, ESAIM: Math Model Numer Anal Modelisation Mathematique et Analyse Numerique, 23, 405, 10.1051/m2an/1989230304051 Eden, 1990, Local estimates for the Hausdorff dimension of an attractor, J Math Anal Appl, 150, 100, 10.1016/0022-247X(90)90198-O Eden, 1991, Local and global Lyapunov exponents, J Dyn Differ Equ, 3, 133, 10.1007/BF01049491 Feng, 2015, Switched generalized function projective synchronization of two hyperchaotic systems with hidden attractors, Eur Phys J Spec Top, 224, 1593, 10.1140/epjst/e2015-02482-y Feng, 2015, Delayed feedback control and bifurcation analysis of the generalized Sprott B system with hidden attractors, Eur Phys J Spec Top, 224, 1619, 10.1140/epjst/e2015-02484-9 Jafari, 2015, Recent new examples of hidden attractors, Eur Phys J Spec Top, 224, 1469, 10.1140/epjst/e2015-02472-1 Kaplan, 1979, Chaotic behavior of multidimensional difference equations, 204 Kuznetsov, 2016, Hidden attractors in fundamental problems and engineering models. A short survey, Lect Notes Electr Eng, 371, 13, 10.1007/978-3-319-27247-4_2 Kuznetsov, 2016, The Lyapunov dimension and its estimation via the Leonov method, Phys Lett A, 10.1016/j.physleta.2016.04.036 Kuznetsov, 2016, Invariance of Lyapunov exponents and Lyapunov dimension for regular and irregular linearizations, Nonlinear Dyn, 1 Kuznetsov, 2015 Kuznetsov, 2010, Analytical-numerical method for attractor localization of generalized Chua’s system, IFAC Proc Vol (IFAC-PapersOnline), 4, 29, 10.3182/20100826-3-TR-4016.00009 Kuznetsov, 2014, Numerical justification of Leonov conjecture on Lyapunov dimension of Rossler attractor, Commun Nonlinear Sci Numer Simulat, 19, 1027, 10.1016/j.cnsns.2013.07.026 Leonov, 2002, Lyapunov dimension formulas for Henon and Lorenz attractors, St. Petersburg Math J, 13, 453 Leonov, 2013, Formulas for the Lyapunov dimension of attractors of the generalized Lorenz system, Doklady Math, 87, 264, 10.1134/S1064562413030010 Leonov, 2015, Analytic exact upper bound for the Lyapunov dimension of the Shimizu-Morioka system, Entropy, 17, 5101, 10.3390/e17075101 Leonov, 2013, Hidden attractors in dynamical systems. from hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractors in Chua circuits, Int J Bifurc Chaos, 23, 10.1142/S0218127413300024 Leonov, 2015, On differences and similarities in the analysis of Lorenz, Chen, and Lu systems, Appl Math Comput, 256, 334 Leonov, 2015, Estimation of Lyapunov dimension for the Chen and Lu systems. Leonov, 2015, The Lyapunov dimension formula for the global attractor of the Lorenz system. Leonov, 2015, Lyapunov dimension formula of attractors in the Tigan and Yang systems. Leonov, 2015, Hidden attractor and homoclinic orbit in Lorenz-like system describing convective fluid motion in rotating cavity, Commun Nonlinear Sci Numer Simul, 28, 166, 10.1016/j.cnsns.2015.04.007 Leonov, 2015, Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion, Eur Phys J Special Topics, 224, 1421, 10.1140/epjst/e2015-02470-3 Leonov, 2015, The lyapunov dimension formula of self-excited and hidden attractors in the Glukhovsky-Dolzhansky system. Leonov, 2011, Localization of hidden Chua’s attractors, Phys Lett A, 375, 2230, 10.1016/j.physleta.2011.04.037 Leonov, 2012, Hidden attractor in smooth Chua systems, Physica D Nonlinear Phenom, 241, 1482, 10.1016/j.physd.2012.05.016 Leonov, 1993, Eden’s hypothesis for a Lorenz system, Vestnik St Petersburg Univ Math, 26, 15 Leonov, 2012, Erratum to “the dimension formula for the Lorenz attractor”, Phys Lett A, 376, 3472, 10.1016/j.physleta.2012.09.002 Leonov, 2005, On the Lyapunov dimension of the attractor of Chirikov dissipative mapping, AMS Translat Proc St Petersburg Math Soc, Vol. X, 15 Leonov, 1983, On the global stability of the Lorenz system, J Appl Math Mech, 47, 861, 10.1016/0021-8928(83)90146-6 Leonov, 1991, On estimations of Hausdorff dimension of attractors, Vestnik St Petersburg Univ Math, 24, 38 Leonov, 2008 Leonov, 2012, Lyapunov functions in the attractors dimension theory, JAppl Math Mech, 76, 129, 10.1016/j.jappmathmech.2012.05.002 Leonov, 1992, Lyapunov’s direct method in the estimation of the Hausdorff dimension of attractors, Acta Applicandae Math, 26, 1, 10.1007/BF00046607 Leonov, 1987, Attraktorlokalisierung des Lorenz-systems, ZAMM - J Appl Math Mech/Zeitschrift fur Angewandte Mathematik und Mechanik, 67, 649, 10.1002/zamm.19870671215 Li, 2015, Multistability in symmetric chaotic systems, Eur Physl J Spec Topics, 224, 1493, 10.1140/epjst/e2015-02475-x Lorenz, 1963, Deterministic nonperiodic flow, J Atmos Sci, 20, 130, 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 Lu, 2002, A new chaotic attractor coined, Int J Bifurcation Chaos, 12, 1789 Pham, 2015, Hidden attractors in a chaotic system with an exponential nonlinear term, Eur Physl J Spec Topics, 224, 1507, 10.1140/epjst/e2015-02476-9 Saha, 2015, Memristive non-linear system and hidden attractor, Eur Physl Jo Spe Topics, 224, 1563, 10.1140/epjst/e2015-02480-1 Semenov, 2015, Numerical and experimental studies of attractors in memristor-based chua’s oscillator with a line of equilibria. noise-induced effects, Eur Physl J Spec Topics, 224, 1553, 10.1140/epjst/e2015-02479-6 Shahzad, 2015, Synchronization and circuit design of a chaotic system with coexisting hidden attractors, Eur Phys JSpec Topics, 224, 1637, 10.1140/epjst/e2015-02485-8 Sharma, 2015, Control of multistability in hidden attractors, Eur Phys J Special Topics, 224, 1485, 10.1140/epjst/e2015-02474-y Sparrow, 1982, The Lorenz equations: bifurcations, chaos, and strange attractors, 10.1007/978-1-4612-5767-7 Sprott, 2015, Strange attractors with various equilibrium types, Eur Phys J Spec Topics, 224, 1409, 10.1140/epjst/e2015-02469-8 Tigan, 2008, Analysis of a 3d chaotic system, Chaos Solit Fract, 36, 1315, 10.1016/j.chaos.2006.07.052 Vaidyanathan, 2015, A 5-d hyperchaotic Rikitake dynamo system with hidden attractors, Eur Phys J Spec Topics, 224, 1575, 10.1140/epjst/e2015-02481-0 Yu, 2004, Hopf bifurcation control using nonlinear feedback with polynomial functions, Int J Bifurc Chaos, 14, 1683, 10.1142/S0218127404010291 Zhusubaliyev, 2015, Multistability and hidden attractors in an impulsive goodwin oscillator with time delay, Eur Phys J Spec Topics, 224, 1519, 10.1140/epjst/e2015-02477-8