Lunar Mineralogical Spectrometer on Chang’E-5 Mission

Space Science Reviews - Tập 218 - Trang 1-22 - 2022
Rui Xu1, Chunlai Li1, Liyin Yuan1, Gang Lv1, Sheng Xu1, Feifei Li1, Jian Jin1, Zhendong Wang1, Wei Pan1, Rong Wang1, Meizhu Wang1, Jianan Xie1, Jie Yang1, Jianyu Wang1, Zhiping He1
1Key Laboratory of Space Active Opto-electronics Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, China

Tóm tắt

The Lunar Mineralogical Spectrometer (LMS) is one of the main payloads on the Chang’E-5 (CE-5) lunar probe, belonging to the China Lunar Exploration Program. The scientific objective of the LMS is to explore the mineralogical composition and search for evidence of -OH/H2O in the sampling area. The LMS consists of an optomechanism unit, a dustproof calibration unit (DPCU) and an electronic unit. The LMS is installed on the lander about 1.4-m above the lunar surface, the field of view (FOV) is $4.17\times 4.17^{\circ }$ , the instant FOV of the visible imaging channel is 0.28 mrad, and the typical spatial resolution is 0.56 mm/pixel @ 2 m distance. The rotation range of the 2D scanner is $\pm 22.5^{\circ}$ along the azimuth axis and $0\sim 30^{\circ }$ along the elevation axis, making it possible to observe the sampling area or to select important observing targets. The dispersing beam uses acousto-optic tunable filters, and target detection is performed with a 2D scanner. The LMS acquires spectral imaging information covering 480–950 nm, and reflectance spectra of 900–3,200-nm, both at a 5-nm/band sampling interval. The spectral resolution is $2.4\sim 9.4\text{ nm}$ in the visible and near-infrared channels and $7.6\sim 24.9\text{ nm}$ in the short–medium-wave infrared channel. The LMS has a 588-band detection capability designed for fine spectral observation of sampling points and wields a 20-band full-view multi-spectral mode to observe candidate areas prior to sampling. The DPCU of the LMS is integrated with a calibration diffuser that is used for in-flight calibration on the lunar surface using solar irradiation, thus improving the quantitative level of scientific data.

Tài liệu tham khảo

D.A. Belyaev, K.B. Yushkov, S.P. Anikin, Y.S. Dobrolenskiy, L. Aleksander, S.N. Mantsevich, M.V. Ya, S.A. Potanin, O.I. Korablev, Compact acousto-optic imaging spectro-polarimeter for mineralogical investigations in the near infrared. Opt. Express 25(21), 25980–25991 (2017) J.P. Bibring, Microscope-Spectrometer MicrOmega, NPO Lavochkin, Chap. 4 (2011), pp. 352–362. http://www.iki.rssi.ru/books/2011f-g2.pdf J.P. Bibring, V. Hamm, C. Pilorget, J.L. Vago, the MicrOmega Team, The MicrOmega investigation onboard ExoMars. Astrobiology 17(6–7), 621–626 (2017b). https://doi.org/10.1089/ast.2016.1642 J.P. Bibring, V. Hamm, Y. Langevin, C. Pilorget, A. Arondel, M. Bouzit, M. Chaigneau, B. Crane, A. Darié, C. Evesque, J. Hansotte, V. Gardien, L. Gonnod, J.C. Leclech, L. Meslier, T. Redon, C. Tamiatto, S. Tosti, N. Thoores, The micromega investigation onboard Hayabusa2. Space Sci. Rev. 208, 401–412 (2017a). https://doi.org/10.1007/s11214-017-0335-y T. Cai, C. Li, Z. He, X. Ren, B. Liu, R. Xu, Experimental ground validation of spectral quality of the Chang’e-5 Lunar Mineralogical Spectrometer. Spectrosc. Spectr. Anal. 39(1), 257–262 (2019) G. Chander, B. Markham, Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 113, 893–903 (2009). https://doi.org/10.1016/j.rse.2009.01.007 N. Chanover, D. Glenar, J. Hillman, Multispectral near-IR imaging of Venus nightside cloud features. J. Geophys. Res. 103, 31335–31348 (1998). https://doi.org/10.1029/1998JE900009 T. Fouchet, J.M. Reess, F. Montmessin, R. Hassen-Khodja, N. Nguyen-Tuong, O. Humeau, S. Jacquinod, L. Lapauw, J. Parisot, M. Bonafous, P. Bernardi, F. Chapron, A. Jeanneau, C. Collin, D. Zeganadin, P. Nibert, S. Abbaki, C. Montaron, C. Blanchard, R. Wiens, The supercam infrared spectrometer for the perseverance rover of the Mars2020 mission. Icarus 373, 114773 (2021). https://doi.org/10.1016/j.icarus.2021.114773 R. Green, C. Pieters, P. Mouroulis, M. Eastwood, J. Boardman, T. Glavich, P. Isaacson, M. Annadurai, S. Besse, D. Barr, B. Buratti, D. Cate, A. Chatterjee, R. Clark, L. Cheek, J. Combe, D. Dhingra, V. Essandoh, S. Geier, D. Wilson, The Moon Mineralogy Mapper (M(3)) imaging spectrometer for lunar science: instrument description, calibration, on-orbit measurements, science data calibration and on-orbit validation. J. Geophys. Res., Planets 116, E00G19 (2011) https://doi.org/10.1029/2011JE003797 Z. He, B. Wang, G. Lv, C. Li, L. Yuan, R. Xu, K. Chen, J. Wang, Visible and near-infrared imaging spectrometer and its preliminary results from the Chang’e 3 project. Rev. Sci. Instrum. 85, 083104 (2014a). https://doi.org/10.1063/1.4891865 Z.P. He, B.Y. Wang, L. Gang, C.L. Li, L.Y. Yuan, R. Xu, B. Liu, Operating principles and detection characteristics of the visible and near-infrared imaging spectrometer in the Chang’e-3. Res. Astron. Astrophys. 14(12), 1567–1577 (2014b) Z. He, C. Li, R. Xu, G. Lv, L.Y. Yuan, J.Y. Wang, Spectrometers based on acousto-optic tunable filters for in-situ lunar surface measurement. J. Appl. Remote Sens. 13(2), 027502 (2019). https://doi.org/10.1117/1.JRS.13.027502 O. Korablev, A. Ivanov, S. Mantsevich, A. Kiselev, N. Vyazovetskiy, A. Fedorova, N. Evdokimova, A. Stepanov, A. Titov, Y. Kalinnikov, R. Kuzmin, A. Bazilevsky, A. Bondarenko, P. Moiseev, AOTF near-IR spectrometers for study of Lunar and Martian surface composition, in European Planetary Science Congress 2014, vol. 9 (2014), p. 50. https://meetingorganizer.copernicus.org/EPSC2014/EPSC2014-371-2.pdf O. Korablev, Y. Dobrolensky, N. Evdokimova, A. Fedorova, R. Kuzmin, S. Mantsevich, E. Cloutis, J. Carter, F. Poulet, J. Flahaut, A. Griffiths, M. Gunn, N. Schmitz, F.J. Martín-Torres, M.P. Zorzano, D. Rodionov, J. Vago, A. Stepanov, A. Titov, A. Ivanov, Infrared spectrometer for ExoMars: a mast-mounted instrument for the rover. Astrobiology 17, 542–564 (2017). https://doi.org/10.1089/ast.2016.1543 O. Korablev, D. Belyaev, Y. Dobrolenskiy, A. Trokhimovskiy, Y. Kalinnikov, Acousto-optic tunable filter spectrometers in space missions [invited]. Appl. Opt. 57, C103–C119 (2018). https://doi.org/10.1364/AO.57.00C103 S. Li, R. Milliken, An empirical thermal correction model for Moon Mineralogy Mapper data constrained by laboratory spectra and Diviner temperatures: a thermal correction model for m3. J. Geophys. Res., Planets 121, 2081–2107 (2016). https://doi.org/10.1002/2016JE005035 S. Li, R. Milliken, Water on the surface of the Moon as seen by the Moon Mineralogy Mapper: distribution, abundance, and origins. Sci. Adv. 3, e1701471 (2017). https://doi.org/10.1126/sciadv.1701471 S. Li, P.G. Lucey, R.E. Milliken, P.O. Hayne, E. Fisher, J.P. Williams, D.M. Hurley, R.C. Elphic, Direct evidence of surface exposed water ice in the lunar polar regions. Proc. Natl. Acad. Sci. 115(36), 8907–8912 (2018) C. Li, D. Liu, B. Liu, X. Ren, J. Liu, Z. he, Z. Wei, X. Zeng, R. Xu, X. Tan, X. Zhang, W. Chen, R. Shu, W. Wen, Y. Su, H. Zhang, Z. Ouyang, Chang’e-4 initial spectroscopic identification of lunar far-side mantle-derived materials. Nature 569, 378 (2019a). https://doi.org/10.1038/s41586-019-1189-0 C. Li, C. Wang, Y. Wei, Y. Lin, China’s present and future lunar exploration program. Science 365(6450), 238–239 (2019b) C. Li, Z. Wang, R. Xu, G. Lv, L. Yuan, Z. He, J. Wang, The scientific information model of Chang’e-4 visible and near-IR imaging spectrometer (VNIS) and in-flight verification. Sensors 19(12), 2806 (2019c) C.L. Li, R. Xu, G. Lv, L.Y. Yuan, J.Y. Wang, Detection and calibration characteristics of the visible and near-infrared imaging spectrometer in the Chang’e-4. Rev. Sci. Instrum. 90(10), 103106 (2019d) H. Lin, Z. He, W. Yang, Y. Lin, Y. Zou, Olivine-norite rock detected by the lunar rover Yutu-2 likely crystallized from the SPA impact melt pool. Nat. Sci. Rev. 7(5), 913–920 (2019) H. Lin, Y. Lin, W. Yang, Z. He, S. Hu, Y. Wei, R. Xu, J.H. Zhang, X. Liu, J. Yang, Y. Xing, C. Yu, Y. Zou, New insight into lunar regolith-forming processes by the lunar rover Yutu-2. Geophys. Res. Lett. (2020). https://doi.org/10.1029/2020GL087949 Z. Ling, B.L. Jolliff, A. Wang, C. Li, J. Liu, J. Zhang, B. Li, L. Sun, J. Chen, L. Xiao, Correlated compositional and mineralogical investigations at the Chang’e-3 landing site. Nat. Commun. 6, 8880 (2015) J. Liu, X. Zeng, C. Li, X. Ren, W. Yan, X. Tan, X. Zhang, W. Chen, Z. Wei, Y. Liu, B. Liu, D. Liu, Q. Zhou, Z. Ouyang, Landing site selection and overview of China’s lunar landing missions. Space Sci. Rev. 217, 6 (2021). https://doi.org/10.1007/s11214-020-00781-9 S. Murchie, R. Arvidson, P. Bedini et al., Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO). J. Geophys. Res., Planets 112(E5) (2007). https://doi.org/10.1029/2006JE002682. https://agupubs.onlinelibrary.Wiley.com/doi/abs/10.1029/2006JE002682 R. Perez, R. Newell, S. Robinson, P. Caïs, S. Maurice, R. Wiens, L. Pares, P. Bernardi, J.M. Réess, K. McCabe, The supercam instrument on the NASA Mars 2020 mission: optical design and performance (2017), p. 266. https://doi.org/10.1117/12.2296230 C. Pieters, J. Boardman, B. Buratti, A. Chatterjee, R. Clark, T. Glavich, R. Green, J. Head, P. Isaacson, E. Malaret, T. Mccord, J. Mustard, N. Petro, C. Runyon, M. Staid, J. Sunshine, L. Taylor, S. Tompkins, P. Varanasi, M. White, The Moon Mineralogy Mapper (m3) on Chandrayaan-1. Curr. Sci. 96, 500–505 (2009) C.M. Pieters, J. Goswami, R. Clark, M. Annadurai, J. Boardman, B. Buratti, J.P. Combe, M. Dyar, R. Green, J. Head et al., Character and spatial distribution of OH/H2O on the surface of the Moon seen by M3 on Chandrayaan-1. Science 326(5952), 568–572 (2009b) Y. Qian, L. Xiao, J.W. Head, C.H.V.D. Bogert, L. Wilson, Young lunar mare basalts in the Chang’e-5 sample return region, northern Oceanus Procellarum. Earth Planet. Sci. Lett. 555, 116702 (2020) M. Strojnik Scholl, G. Páez, O. Korablev, A. Ivanov, A. Fedorova, Y.K. Kalinnikov, A. Shapkin, S. Mantsevich, N. Viazovetsky, E. Na, Development of a mast or robotic arm-mounted infrared AOTF spectrometer for surface Moon and Mars probes, in SPIE Optical Engineering and Applications (2015), p. 960807 R. Wiens, S. Maurice, S. Robinson, A. Nelson, P. Cais, P. Bernardi, R. Newell, S. Clegg, S. Sharma, S. Storms, J. Deming, D. Beckman, A. Ollila, O. Gasnault, R. Anderson, Y. André, S. Angel, G. Arana, E. Auden, P. Willis, The SuperCam instrument suite on the NASA Mars 2020 rover: body unit and combined system tests. Space Sci. Rev. 217 (2021). https://doi.org/10.1007/s11214-020-00777-5 R. Xu, G. Lv, Y.H. Ma, J. Wang, Calibration of visible and near-infrared imaging spectrometer (VNIS) on lunar surface. Proc. SPIE Int. Soc. Opt. Eng. 9263 (2014). https://doi.org/10.1117/12.2068947 P. Ye, J. Peng, Deep space exploration and its prospect in China. Eng. Sci. 10, 13–18 (2006) D. Yury, S. Mantsevich, N. Evdokimova, O. Korablev, A. Fedorova, Y. Kalinnikov, N. Vyazovetskiy, A. Titov, A. Stepanov, A. Sapgir, I. Dzyuban, R. Kuzmin, Y. Ivanov, I. Syniavskyi, V. Petrov, V. Smol’yaninova, A. Dokuchaev, Acousto-optic spectrometer ISEM for ExoMars-2020 space mission: ground measurements and calibrations, in Fourteenth School on Acousto-Optics and Applications, International Society for Optics and Photonics, ed. by I. Grulkowski, B.B.J. Linde, M. Duocastella. SPIE, vol. 11210 (2019), pp. 94–104. https://doi.org/10.1117/12.2540203