Lump solutions to a generalized Bogoyavlensky-Konopelchenko equation

Springer Science and Business Media LLC - Tập 13 Số 3 - Trang 525-534 - 2018
Shou-Ting Chen1, Wen‐Xiu Ma2
1School of Mathematics and Physical Science, Xuzhou Institute of Technology, Xuzhou, 221008, China
2Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ablowitz M J, Clarkson P A. Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge: Cambridge Univ Press, 1991

Caudrey P J. Memories of Hirota's method: application to the reduced Maxwell-Bloch system in the early 1970s. Philos Trans R Soc A Math Phys Eng Sci, 2011, 369: 1215–1227

Dong H H, Zhang Y, Zhang X E. The new integrable symplectic map and the symmetry of integrable nonlinear lattice equation. Commun Nonlinear Sci Numer Simul, 2016, 36: 354–365

Dorizzi B, Grammaticos B, Ramani A, Winternitz P. Are all the equations of the Kadomtsev-Petviashvili hierarchy integrable? J Math Phys, 1986, 27: 2848–2852

Gilson C, Lambert F, Nimmo J, Willox R. On the combinatorics of the Hirota D-operators. Proc R Soc Lond Ser A, 1996, 452: 223–234

Gilson C R, Nimmo J J C. Lump solutions of the BKP equation. Phys Lett A, 1990, 147: 472–476

Harun-Or-Roshid, Ali M Z. Lump solutions to a Jimbo-Miwa like equation. arXiv: 1611.04478

Hirota R. The Direct Method in Soliton Theory. New York: Cambridge Univ Press, 2004

Ibragimov N H. A new conservation theorem. J Math Anal Appl, 2007, 333: 311–328

Imai K. Dromion and lump solutions of the Ishimori-I equation. Progr Theoret Phys, 1997, 98: 1013–1023

Kaup D J. The lump solutions and the Bäcklund transformation for the threedimensional three-wave resonant interaction. J Math Phys, 1981, 22: 1176–1181

Kofane T C, Fokou M, Mohamadou A, Yomba E. Lump solutions and interaction phenomenon to the third-order nonlinear evolution equation. Eur Phys J Plus, 2017, 132: 465

Konopelchenko B, Strampp W. The AKNS hierarchy as symmetry constraint of the KP hierarchy. Inverse Problems, 1991, 7: L17–L24

Li X Y, Zhao Q L. A new integrable symplectic map by the binary nonlinearization to the super AKNS system. J Geom Phys, 2017, 121: 123–137

Li X Y, Zhao Q L, Li Y X, Dong H H. Binary Bargmann symmetry constraint associated with 3 x 3 discrete matrix spectral problem. J Nonlinear Sci Appl, 2015, 8(5): 496–50616.

Lin F H, Chen S T, Qu Q X, Wang J P, Zhou X W, Lü X. Resonant multiple wave solutions to a new (3 + 1)-dimensional generalized Kadomtsev-Petviashvili equation: Linear superposition principle. Appl Math Lett, 2018, 78: 112–117

Lu C N, Fu C, Yang H W. Time-fractional generalized Boussinesq equation for Rossby solitary waves with dissipation effect in stratied uid and conservation laws as well as exact solutions. Appl Math Comput, 2018, 327: 104–116

Lü X, Chen S T, Ma W X. Constructing lump solutions to a generalized Kadomtsev-Petviashvili-Boussinesq equation. Nonlinear Dynam, 2016, 86: 523–534

Lü X, Wang J P, Lin F H, Zhou X W. Lump dynamics of a generalized two-dimensional Boussinesq equation in shallow water. Nonlinear Dynam, 2018, 91: 1249–1259

Ma W X. Wronskian solutions to integrable equations. Discrete Contin Dyn Syst, 2009, Suppl: 506–515

Ma W X. Bilinear equations, Bell polynomials and linear superposition principle. J Phys Conf Ser, 2013, 411: 012021

Ma W X. Lump solutions to the Kadomtsev-Petviashvili equation. Phys Lett A, 2015, 379: 1975–1978

Ma W X. Lump-type solutions to the (3+1)-dimensional Jimbo-Miwa equation. Int J Nonlinear Sci Numer Simul, 2016, 17: 355–359

Ma W X. Conservation laws by symmetries and adjoint symmetries. Discrete Contin Dyn Syst Ser S, 2018, 11: 707–721

Ma W X, Fan E G. Linear superposition principle applying to Hirota bilinear equations. Comput Math Appl, 2011, 61: 950–959

Ma W X, Qin Q Z, Lü X. Lump solutions to dimensionally reduced p-gKP and p-gBKP equations. Nonlinear Dynam, 2016, 84: 923–931

Ma W X, Yong X L, Zhang H Q. Diversity of interaction solutions to the (2 + 1)-dimensional Ito equation. Comput Math Appl, 2018, 75: 289–295

Ma W X, You Y. Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions. Trans Amer Math Soc, 2005, 357: 1753–1778

Ma W X, Zhou Y. Lump solutions to nonlinear partial differential equations via Hirota bilinear forms. J Differential Equations, 2018, 264: 2633–2659

Ma W X, Zhou Y, Dougherty R. Lump-type solutions to nonlinear differential equations derived from generalized bilinear equations. Internat J Modern Phys B, 2016, 30: 1640018

Manakov S V, Zakharov V E, Bordag L A, Matveev V B. Two-dimensional solitons of the Kadomtsev-Petviashvili equation and their interaction. Phys Lett A, 1977, 63: 205–206

Novikov S, Manakov S V, Pitaevskii L P, Zakharov V E. Theory of Solitons The Inverse Scattering Method. New York: Consultants Bureau, 1984

Ray S S. On conservation laws by Lie symmetry analysis for (2 + 1)-dimensional Bogoyavlensky-Konopelchenko equation in wave propagation. Comput Math Appl, 2017, 74: 1158–1165

Satsuma J, Ablowitz M J. Two-dimensional lumps in nonlinear dispersive systems. J Math Phys, 1979, 20: 1496–1503

Tan W, Dai H P, Dai Z D, Zhong W Y. Emergence and space-time structure of lump solution to the (2+1)-dimensional generalized KP equation. Pramana J Phys, 2017, 89: 77

Tang Y N, Tao S Q, Qing G. Lump solitons and the interaction phenomena of them for two classes of nonlinear evolution equations. Comput Math Appl, 2016, 72: 2334–2342

Triki H, Jovanoski Z, Biswas A. Shock wave solutions to the Bogoyavlensky-Konopelchenko equation. Indian J Phys, 2014, 88: 71–74

Ünsal Ö, Ma W X. Linear superposition principle of hyperbolic and trigonometric function solutions to generalized bilinear equations. Comput Math Appl, 2016, 71: 1242–1247

Wazwaz A-M, El-Tantawy S A. New (3+1)-dimensional equations of Burgers type and Sharma-Tasso-Olver type: multiple-soliton solutions. Nonlinear Dynam, 2017, 87(4): 2457–2461

Xu Z H, Chen H L, Dai Z D. Rogue wave for the (2 + 1)-dimensional Kadomtsev-Petviashvili equation. Appl Math Lett, 2014, 37: 34–38

Yang H W, Chen X, Guo M, Chen Y D. A new ZKCBO equation for three-dimensional algebraic Rossby solitary waves and its solution as well asssion property. Nonlinear Dynam, 2018, 91: 2019–2032

Yang J Y, Ma W X. Lump solutions of the BKP equation by symbolic computation. Internat J Modern Phys B, 2016, 30: 1640028

Yang J Y, Ma W X. Abundant lump-type solutions of the Jimbo-Miwa equation in (3 + 1)-dimensions. Comput Math Appl, 2017, 73: 220–225

Yang J Y, Ma W X. Abundant interaction solutions of the KP equation. Nonlinear Dynam, 2017, 89: 1539–1544

Yang J Y, Ma W X, Qin Z Y. Mixed lump-soliton solutions of the BKP equation. East Asian J Appl Math, 2017

Yang J Y, Ma WX, Qin Z Y. Lump and lump-soliton solutions to the (2+1)-dimensional Ito equation. Anal Math Phys, 2017, https://doi.org/10.1007/s13324-017-0181-9

Yu J P, Sun Y L. Study of lump solutions to dimensionally reduced generalized KP equations. Nonlinear Dynam, 2017, 87: 2755–2763

Zhang J B, Ma W X. Mixed lump-kink solutions to the BKP equation. Comput Math Appl, 2017, 74: 591–596

Zhang Y, Dong H H, Zhang X E, Yang H W. Rational solutions and lump solutions to the generalized (3 + 1)-dimensional shallow water-like equation. Comput Math Appl, 2017, 73: 246–252

Zhang Y, Sun S L, Dong H H. Hybrid solutions of (3 + 1)-dimensional Jimbo-Miwa equation. Math Probl Eng, 2017, 2017: Article ID 5453941

Zhao H Q, Ma W X. Mixed lump-kink solutions to the KP equation. Comput Math Appl, 2017, 74: 1399–1405

Zhao Q L, Li X Y. A Bargmann system and the involutive solutions associated with a new 4-order lattice hierarchy. Anal Math Phys, 2016, 6: 237–254

Zheng H C, Ma W X, Gu X. Hirota bilinear equations with linear subspaces of hyperbolic and trigonometric function solutions. Appl Math Comput, 2013, 220: 226–234