Luminescent properties of Tb doped gadolinium aluminate nanophosphors for display and forensic applications

P.K. Jisha1,2, S.C. Prashantha2,3, H. Nagabhushana4
1Department of Physics, New Horizon College of Engineering, Bangalore 560103, India
2Research and Development Center, Bharathiar University, Coimbatore 641046, India
3Research Center, Department of Science, East West Institute of Technology, VTU, Bengaluru, 560091, India
4Prof. CNR Rao Center for Advanced Materials, Tumkur University, Tumkur, 572103, India

Tài liệu tham khảo

Jin Bachmann, 2009, Temperature quenching of yellow Ce3+ luminescence in YAG: Ce, Chem. Mater., 21, 2077, 10.1021/cm8030768 Li, 2016, Photoluminescence properties of phosphors based on Lu3+-stabilized Gd3Al5O12:Tb3+/Ce3+ garnet solid solutions, Opt. Mater., 62, 328, 10.1016/j.optmat.2016.09.076 Dutta, 2014, Optical properties of sonochemically synthesized rare earth ions doped BaTiO3 nanophosphors: probable candidate for white light emission, J. Lumin., 148, 230, 10.1016/j.jlumin.2013.11.071 Lorbeer, 2013, White light emitting single phosphors via triply doped LaF3 nanoparticles, J. Phys. Chem. C, 177, 12229, 10.1021/jp312411f Li, 2016, Nd(3+) sensitized upconversion nanostructure as a dual channel emitting optical probe for near infrared-to-near infrared fingerprint imaging, Inorg. Chem., 55, 10278, 10.1021/acs.inorgchem.6b01536 Wang, 2015, NIR-induced highly sensitive detection of latent finger marks by NaYF4: Yb, Er up conversion nanoparticles in a dry powder state, Nano Res., 8, 1800, 10.1007/s12274-014-0686-6 Saif, 2015, Novel non-toxic and red luminescent sensor based on Eu3+:Y2Ti2O7/SiO2 nano-powder for latent finger print detection, Sens. Actuators B Chem., 220, 162, 10.1016/j.snb.2015.05.040 Dhanalakshmi, 2017, Sonochemically assisted hollow/solid BaTiO3:Dy3+ microspheres and their applications in effective detection of latent fingerprints and lip prints, J. Sci. Adv. Mater. Devices, 2, 22, 10.1016/j.jsamd.2017.02.004 Tamrakar, 2014, Characterization and luminescence properties of Gd2O3 phosphor, Res. Chem. Intermed., 40, 1771, 10.1007/s11164-013-1080-9 Chan, 1998, Quantum dot bio conjugates for ultrasensitive non isotopic detection, Science, 28, 2016, 10.1126/science.281.5385.2016 Tamrakar, 2014, Structural and UV-irradiated thermoluminescence studies of ZnS: Cu nanoparticles synthesized by wet chemical route method, J. Lumin. Appl., 11, 23 Shilpa, 2014, GdAlO3:Eu3+:Bi3+ nanophosphor: synthesis and enhancement of red emission for WLEDs, Spectr. Acta A Mol. Bio. Spectr., 133, 550, 10.1016/j.saa.2014.05.082 Vinod Kumar, 2014, Tunable and white emission from ZnO:Tb3+ nanophosphors for solid state lighting applications, Chem. Eng. J., 255, 541, 10.1016/j.cej.2014.06.027 Raju, 2011, Synthesis, structural and luminescent properties of Pr3+ activated GdAlO3 phosphors by solvothermal reaction method, Curr. Appl. Phys., 11, S292, 10.1016/j.cap.2011.01.036 Prashantha, 2011, Photoluminescence and thermoluminescence studies of Mg2SiO4:Eu3+ nanophosphor, J. Alloys Compd., 509, 10185, 10.1016/j.jallcom.2011.03.148 Ross, 2004, High-pressure structural behaviour of GdAlO3 and GdFeO3 perovskites, J. Solid State Chem., 177, 3768, 10.1016/j.jssc.2004.07.002 Padua, 1989, Absorption and luminescence spectroscopy of GdAlO3:Eu3+, J. Lumin., 43, 379, 10.1016/0022-2313(89)90042-2 Du, 2016, Synthesis and luminescent properties of Eu3+ activated Na0.5Gd0.5 MoO4: a strong red-emitting phosphor for LED and FED applications, J. Lumin., 179, 451, 10.1016/j.jlumin.2016.07.045 Girish, 2017, Facile combustion based engineering of novel white light emitting Zn2TiO4:Dy3+ nanophosphors for display and forensic applications, J. Sci. Adv. Mater. Devices, 2, 360, 10.1016/j.jsamd.2017.05.011 Prashantha, 2012, 100 MeV Si8+ ion induced luminescence and thermoluminescence of nanocrystalline Mg2SiO4:Eu3+, J. Lumin., 132, 3093, 10.1016/j.jlumin.2012.03.030 Tauc, 1972, States in the GaP, J. Non-Crystalline Solids, 8, 569, 10.1016/0022-3093(72)90194-9 Aguielera, 2013, Direct band gap narrowing in highly doped Ge, Appl. Phys. Lett., 102, 152106, 10.1063/1.4802199 Girish, 2016, Visible photon excited photoluminescence; photometric characteristics of a green light emitting Zn2TiO4:Tb3+ nanophosphor for wLEDs, Mater. Res. Express, 3, 075015, 10.1088/2053-1591/3/7/075015 Hakeem, 2016, Luminescent characteristics of Ba1−xAl2Si2O8:xTb3+ green phosphors, J. Nanosci. Nanotechnol., 16, 1761, 10.1166/jnn.2016.12021 Oliveira, 2009, Structural and optical properties of GdAlO3:RE3+ (RE = Eu or Tb) prepared by the Pechini method for application as X-ray phosphors, J. Alloys Compd., 488, 619, 10.1016/j.jallcom.2009.04.099 Jisha, 2015, Facile combustion synthesized orthorhombic GdAlO3:Eu3+ nanophosphors: structural and photoluminescence properties for WLEDs, J. Lumin., 163, 47, 10.1016/j.jlumin.2015.03.006 Zeng, 2016, A novel blue-greenish emitting phosphor Ba3LaK(PO4)3F:Tb3+ with high thermal stability, Mater. Res. Bull., 76, 62, 10.1016/j.materresbull.2015.12.008 Li, 2015, A novel greenish yellow-orange red Ba3Y4O9:Bi3+, Eu3+ phosphor with efficient energy transfer for UV-LEDs, Dalton Trans., 44, 20542, 10.1039/C5DT03565A Manohar, 2015, Photoluminescence and Judd–Ofelt analysis of Eu3+ doped LaAlO3 nanophosphors for WLEDs, Dyes Pigments, 122, 22, 10.1016/j.dyepig.2015.06.002 Shivaram, 2014, Synthesis and luminescence properties of Sm3+ doped CaTiO3 nanophosphor for application in white LED under NUV excitation, Spectr. Acta A Mol. Bio. Spectr., 128, 891, 10.1016/j.saa.2014.02.117 Dai, 2008, Size and concentration effects on the photoluminescence of La2O2S:Eu3+ nanocrystals, J. Phys. Chem. C, 112, 19399, 10.1021/jp808343f Gupta, 2016, Local site symmetry of Sm3+ in sol–gel derived α′-Sr2SiO4: probed by emission and fluorescence lifetime spectroscopy, J. Lumin., 69, 669, 10.1016/j.jlumin.2014.10.009 Carnall, 1968, Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+, J. Chem. Phys., 49, 4412, 10.1063/1.1669892 Som, 2015, Synthesis of strong red emitting Y2O3:Eu3+ phosphor by potential chemical routes: comparative investigations on the structural evolutions, photometric properties and Judd–Ofelt analysis, RSC Adv., 5, 70887, 10.1039/C5RA13247A Jorgensen, 1983, Judd-Ofelt parameters and chemical bonding, J. Less Common Met., 93, 107, 10.1016/0022-5088(83)90454-X Abhilash Kumar, 2016, Organic mediated synthesis of highly luminescent Li+ ion compensated Gd2O3:Eu3+ nanophosphors and their Judd–Ofelt analysis, RSC Adv., 6, 67295, 10.1039/C5RA26095G Judd, 1962, Optical absorption intensities of rare-earth ions, Phys. Rev., 127, 750, 10.1103/PhysRev.127.750 Ofelt, 1962, Intensities of crystal spectra of rare-earth ions, J. Chem. Phys., 37, 511, 10.1063/1.1701366 Krupke, 1966, Optical absorption and fluorescence intensities in several rare-earth-doped Y2O3 and LaF3 single crystals, Phys. Rev., 145, 325, 10.1103/PhysRev.145.325 Agarwal, 2009, Judd–Ofelt parameters and radiative properties of Sm3+ ions doped zinc bismuth borate glasses, Opt. Mater., 32, 339, 10.1016/j.optmat.2009.08.012 Rama Raju, 2015, UV-A and UV-B excitation region broadened novel green color emitting CaGd2ZnO5:Tb3+ nanophosphors, RSC Adv., 5, 22217, 10.1039/C4RA15376F Darshan, 2016, Effective fingerprint recognition technique using doped yttrium aluminate nano phosphor material, J. Colloid. Interface Sci., 464, 206, 10.1016/j.jcis.2015.11.025 Srinivas, 2017, Synthesis, photoluminescence and forensic applications of blue light emitting azomethine-zinc (II) complexes of bis(salicylidene)cyclohexyl-1,2-diamino based organic ligands, J. Sci. Adv. Mater. Devices, 2, 156, 10.1016/j.jsamd.2017.02.008