Luminescent properties of Tb doped gadolinium aluminate nanophosphors for display and forensic applications
Tài liệu tham khảo
Jin Bachmann, 2009, Temperature quenching of yellow Ce3+ luminescence in YAG: Ce, Chem. Mater., 21, 2077, 10.1021/cm8030768
Li, 2016, Photoluminescence properties of phosphors based on Lu3+-stabilized Gd3Al5O12:Tb3+/Ce3+ garnet solid solutions, Opt. Mater., 62, 328, 10.1016/j.optmat.2016.09.076
Dutta, 2014, Optical properties of sonochemically synthesized rare earth ions doped BaTiO3 nanophosphors: probable candidate for white light emission, J. Lumin., 148, 230, 10.1016/j.jlumin.2013.11.071
Lorbeer, 2013, White light emitting single phosphors via triply doped LaF3 nanoparticles, J. Phys. Chem. C, 177, 12229, 10.1021/jp312411f
Li, 2016, Nd(3+) sensitized upconversion nanostructure as a dual channel emitting optical probe for near infrared-to-near infrared fingerprint imaging, Inorg. Chem., 55, 10278, 10.1021/acs.inorgchem.6b01536
Wang, 2015, NIR-induced highly sensitive detection of latent finger marks by NaYF4: Yb, Er up conversion nanoparticles in a dry powder state, Nano Res., 8, 1800, 10.1007/s12274-014-0686-6
Saif, 2015, Novel non-toxic and red luminescent sensor based on Eu3+:Y2Ti2O7/SiO2 nano-powder for latent finger print detection, Sens. Actuators B Chem., 220, 162, 10.1016/j.snb.2015.05.040
Dhanalakshmi, 2017, Sonochemically assisted hollow/solid BaTiO3:Dy3+ microspheres and their applications in effective detection of latent fingerprints and lip prints, J. Sci. Adv. Mater. Devices, 2, 22, 10.1016/j.jsamd.2017.02.004
Tamrakar, 2014, Characterization and luminescence properties of Gd2O3 phosphor, Res. Chem. Intermed., 40, 1771, 10.1007/s11164-013-1080-9
Chan, 1998, Quantum dot bio conjugates for ultrasensitive non isotopic detection, Science, 28, 2016, 10.1126/science.281.5385.2016
Tamrakar, 2014, Structural and UV-irradiated thermoluminescence studies of ZnS: Cu nanoparticles synthesized by wet chemical route method, J. Lumin. Appl., 11, 23
Shilpa, 2014, GdAlO3:Eu3+:Bi3+ nanophosphor: synthesis and enhancement of red emission for WLEDs, Spectr. Acta A Mol. Bio. Spectr., 133, 550, 10.1016/j.saa.2014.05.082
Vinod Kumar, 2014, Tunable and white emission from ZnO:Tb3+ nanophosphors for solid state lighting applications, Chem. Eng. J., 255, 541, 10.1016/j.cej.2014.06.027
Raju, 2011, Synthesis, structural and luminescent properties of Pr3+ activated GdAlO3 phosphors by solvothermal reaction method, Curr. Appl. Phys., 11, S292, 10.1016/j.cap.2011.01.036
Prashantha, 2011, Photoluminescence and thermoluminescence studies of Mg2SiO4:Eu3+ nanophosphor, J. Alloys Compd., 509, 10185, 10.1016/j.jallcom.2011.03.148
Ross, 2004, High-pressure structural behaviour of GdAlO3 and GdFeO3 perovskites, J. Solid State Chem., 177, 3768, 10.1016/j.jssc.2004.07.002
Padua, 1989, Absorption and luminescence spectroscopy of GdAlO3:Eu3+, J. Lumin., 43, 379, 10.1016/0022-2313(89)90042-2
Du, 2016, Synthesis and luminescent properties of Eu3+ activated Na0.5Gd0.5 MoO4: a strong red-emitting phosphor for LED and FED applications, J. Lumin., 179, 451, 10.1016/j.jlumin.2016.07.045
Girish, 2017, Facile combustion based engineering of novel white light emitting Zn2TiO4:Dy3+ nanophosphors for display and forensic applications, J. Sci. Adv. Mater. Devices, 2, 360, 10.1016/j.jsamd.2017.05.011
Prashantha, 2012, 100 MeV Si8+ ion induced luminescence and thermoluminescence of nanocrystalline Mg2SiO4:Eu3+, J. Lumin., 132, 3093, 10.1016/j.jlumin.2012.03.030
Tauc, 1972, States in the GaP, J. Non-Crystalline Solids, 8, 569, 10.1016/0022-3093(72)90194-9
Aguielera, 2013, Direct band gap narrowing in highly doped Ge, Appl. Phys. Lett., 102, 152106, 10.1063/1.4802199
Girish, 2016, Visible photon excited photoluminescence; photometric characteristics of a green light emitting Zn2TiO4:Tb3+ nanophosphor for wLEDs, Mater. Res. Express, 3, 075015, 10.1088/2053-1591/3/7/075015
Hakeem, 2016, Luminescent characteristics of Ba1−xAl2Si2O8:xTb3+ green phosphors, J. Nanosci. Nanotechnol., 16, 1761, 10.1166/jnn.2016.12021
Oliveira, 2009, Structural and optical properties of GdAlO3:RE3+ (RE = Eu or Tb) prepared by the Pechini method for application as X-ray phosphors, J. Alloys Compd., 488, 619, 10.1016/j.jallcom.2009.04.099
Jisha, 2015, Facile combustion synthesized orthorhombic GdAlO3:Eu3+ nanophosphors: structural and photoluminescence properties for WLEDs, J. Lumin., 163, 47, 10.1016/j.jlumin.2015.03.006
Zeng, 2016, A novel blue-greenish emitting phosphor Ba3LaK(PO4)3F:Tb3+ with high thermal stability, Mater. Res. Bull., 76, 62, 10.1016/j.materresbull.2015.12.008
Li, 2015, A novel greenish yellow-orange red Ba3Y4O9:Bi3+, Eu3+ phosphor with efficient energy transfer for UV-LEDs, Dalton Trans., 44, 20542, 10.1039/C5DT03565A
Manohar, 2015, Photoluminescence and Judd–Ofelt analysis of Eu3+ doped LaAlO3 nanophosphors for WLEDs, Dyes Pigments, 122, 22, 10.1016/j.dyepig.2015.06.002
Shivaram, 2014, Synthesis and luminescence properties of Sm3+ doped CaTiO3 nanophosphor for application in white LED under NUV excitation, Spectr. Acta A Mol. Bio. Spectr., 128, 891, 10.1016/j.saa.2014.02.117
Dai, 2008, Size and concentration effects on the photoluminescence of La2O2S:Eu3+ nanocrystals, J. Phys. Chem. C, 112, 19399, 10.1021/jp808343f
Gupta, 2016, Local site symmetry of Sm3+ in sol–gel derived α′-Sr2SiO4: probed by emission and fluorescence lifetime spectroscopy, J. Lumin., 69, 669, 10.1016/j.jlumin.2014.10.009
Carnall, 1968, Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+, J. Chem. Phys., 49, 4412, 10.1063/1.1669892
Som, 2015, Synthesis of strong red emitting Y2O3:Eu3+ phosphor by potential chemical routes: comparative investigations on the structural evolutions, photometric properties and Judd–Ofelt analysis, RSC Adv., 5, 70887, 10.1039/C5RA13247A
Jorgensen, 1983, Judd-Ofelt parameters and chemical bonding, J. Less Common Met., 93, 107, 10.1016/0022-5088(83)90454-X
Abhilash Kumar, 2016, Organic mediated synthesis of highly luminescent Li+ ion compensated Gd2O3:Eu3+ nanophosphors and their Judd–Ofelt analysis, RSC Adv., 6, 67295, 10.1039/C5RA26095G
Judd, 1962, Optical absorption intensities of rare-earth ions, Phys. Rev., 127, 750, 10.1103/PhysRev.127.750
Ofelt, 1962, Intensities of crystal spectra of rare-earth ions, J. Chem. Phys., 37, 511, 10.1063/1.1701366
Krupke, 1966, Optical absorption and fluorescence intensities in several rare-earth-doped Y2O3 and LaF3 single crystals, Phys. Rev., 145, 325, 10.1103/PhysRev.145.325
Agarwal, 2009, Judd–Ofelt parameters and radiative properties of Sm3+ ions doped zinc bismuth borate glasses, Opt. Mater., 32, 339, 10.1016/j.optmat.2009.08.012
Rama Raju, 2015, UV-A and UV-B excitation region broadened novel green color emitting CaGd2ZnO5:Tb3+ nanophosphors, RSC Adv., 5, 22217, 10.1039/C4RA15376F
Darshan, 2016, Effective fingerprint recognition technique using doped yttrium aluminate nano phosphor material, J. Colloid. Interface Sci., 464, 206, 10.1016/j.jcis.2015.11.025
Srinivas, 2017, Synthesis, photoluminescence and forensic applications of blue light emitting azomethine-zinc (II) complexes of bis(salicylidene)cyclohexyl-1,2-diamino based organic ligands, J. Sci. Adv. Mater. Devices, 2, 156, 10.1016/j.jsamd.2017.02.008