Luminescent core–shell Ca2MoO5:Eu3+-MCM-41 structure for sustained drug release
Tài liệu tham khảo
Aitken, 2018
Cho, 2008, Therapeutic nanoparticles for drug delivery in cancer, Clin. Cancer Res., 14, 1310, 10.1158/1078-0432.CCR-07-1441
Peer, 2007, Nanocarriers as an emerging platform for cancer therapy, Nat Nano, 2, 751, 10.1038/nnano.2007.387
Liang, 2020, Core–shell structured NaYF4: Yb, Er nanoparticles with excellent upconversion luminescent for targeted drug delivery, J. Clust. Sci., 1
Mo, 2014, Enhanced anticancer efficacy by ATP-mediated liposomal drug delivery, Angew. Chem. Int. Ed. Engl., 53, 1, 10.1002/anie.201400268
Dicheva, 2015, Enhanced specificity and drug delivery in tumors by cRGD - anchoring thermosensitive liposomes, Pharm. Res. (N. Y.), 32, 3862, 10.1007/s11095-015-1746-7
Talelli, 2015, Core-crosslinked polymeric micelles: principles, preparation, biomedical applications and clinical translation, Nano Today, 10, 93, 10.1016/j.nantod.2015.01.005
Jhaveri, 2014, Multifunctional polymeric micelles for delivery of drugs and siRNA, Front. Pharmacol., 5, 1, 10.3389/fphar.2014.00077
Wu, 2014, Prostate stem cell antigen antibody-conjugated multiwalled carbon nanotubes for targeted ultrasound imaging and drug delivery, Biomaterials, 35, 5369, 10.1016/j.biomaterials.2014.03.038
Meng, 2020, Preparation of a novel sustained-release system for pyrethroids by using metal-organic frameworks (MOFs) nanoparticle, Colloids Surf. A Physicochem. Eng. Asp., 604, 125, 10.1016/j.colsurfa.2020.125266
Chen, 2020, Macrophage membrane coated persistent luminescence nanoparticle@ MOF-derived mesoporous carbon core–shell nanocomposites for autofluorescence-free imaging-guided chemotherapy, J. Mater. Chem. B., 8, 8071, 10.1039/D0TB01272F
Raji, 2020, Gold nanoparticles against respiratory diseases: oncogenic and viral pathogens review, Ther. Deliv., 11, 521, 10.4155/tde-2020-0071
de Lima, 2021, Amphipathic Au-sulfur-poly (ethylene glycol)-b-poly (butylene succinate) system prepared by interfacial reaction as in-silico photosensitizer and antineoplastic carrier, J. Drug Deliv. Sci. Technol., 64, 102584, 10.1016/j.jddst.2021.102584
Sur, 2019, Recent developments in functionalized polymer nanoparticles for efficient drug delivery system, Nanostruct. Nanoobjects, 20, 100397
Tang, 1996, In vitro gene delivery by degraded polyamidoamine dendrimers, Bioconjug. Chem., 7, 703, 10.1021/bc9600630
Zhang, 2014, Peptide dendrimer – doxorubicin conjugate-based nanoparticle as an enzymeresponsive drug delivery system for cancer therapy, Adv. Healthc. Mater., 3, 1299, 10.1002/adhm.201300601
Yavuz, 2015, In vitro/In vivo evaluation of dexamethasone-PAMAM dendrimer complexes for retinal drug delivery, Pharm. Drug Deliv. Pharm. Technol., 104, 3814
Jeevanandam, 2019, Virus-like nanoparticles as a novel delivery tool in gene therapy, Biochimie, 157, 38, 10.1016/j.biochi.2018.11.001
Zaheer, 2020, Topical review on nano-vaccinology: biochemical promises and key challenges, Process Biochem., 100, 237, 10.1016/j.procbio.2020.09.028
Maleki Dizaj, 2015, Calcium carbonate nanoparticles as cancer drug delivery system, Expet Opin. Drug Deliv., 12, 1649, 10.1517/17425247.2015.1049530
Zhou, 2015, Silica nanotubes decorated by pH-responsive diblock copolymers for controlled drug release, ACS Appl. Mater. Interfaces, 7, 3618, 10.1021/am507832n
Vallet-Regí, 2018, Mesoporous silica nanoparticles for drug delivery: current insights, Molecules, 23, 47, 10.3390/molecules23010047
Akman, 2020, Core/shell type, Ce3+ and Tb3+ doped GdBO3 system: synthesis and Celecoxib drug delivery application, Microporous Mesoporous Mater., 308, 110528, 10.1016/j.micromeso.2020.110528
Poonia, 2017, Mesoporous silica nanoparticles: a smart nanosystem for management of breast cancer, Drug Discov. Today, 23, 315, 10.1016/j.drudis.2017.10.022
Iturrioz-Rodríguez, 2019, Controlled drug delivery systems for cancer based on mesoporous silica nanoparticles, Int. J. Nanomed., 14, 3389, 10.2147/IJN.S198848
Ghosh Chaudhuri, 2012, Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications, Chem. Rev., 112, 2373, 10.1021/cr100449n
Galedari, 2017, Preparation, characterization, and application of ZnO@ SiO2 core–shell structured catalyst for photocatalytic degradation of phenol, Environ. Sci. Pollut. Res., 24, 12655, 10.1007/s11356-016-7888-2
Chatterjee, 2014, Core/shell nanoparticles in biomedical applications, Adv. Colloid İnterface Sci., 209, 8, 10.1016/j.cis.2013.12.008
Morks, 2008, Fabrication and characterization of plasma-sprayed HA/SiO2 coatings for biomedical application, J. Mech. Behav. Biomed. Mater., 1, 105, 10.1016/j.jmbbm.2007.04.003
Li, 2012, Mesoporous silica nanoparticles in biomedical applications, Chem. Soc. Rev., 41, 2590, 10.1039/c1cs15246g
Prasanna, 2020, Multifunctional ZnO/SiO2 core/shell nanoparticles for bioimaging and drug delivery application, J. Fluoresc., 30, 1075, 10.1007/s10895-020-02578-z
Wu, 2020, Recent advances of persistent luminescence nanoparticles in bioapplications, Nano-Micro Lett., 12, 1, 10.1007/s40820-020-0404-8
Sahu, 2017, Retracted: studies on the luminescence properties of cerium co-doping on Ca2MgSi2O7:Eu2+ phosphor by solid-state reaction method, Luminescence, 32, 1263, 10.1002/bio.3320
Liu, 2013, Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8, Sci. Rep., 3, 1
Allix, 2013, Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4, Chem. Mater., 25, 1600, 10.1021/cm304101n
Sun, 2014, Persistent luminescent nanoparticles for super-long time in vivo and in situ imaging with repeatable excitation, J. Lumin., 145, 838, 10.1016/j.jlumin.2013.08.070
Sharma, 2014, Persistent luminescence of AB2O4: Cr3+ (A= Zn, Mg, B= Ga, Al) spinels: new biomarkers for in vivo imaging, Opt. Mater., 36, 1901, 10.1016/j.optmat.2014.06.020
Maldiney, 2012, In vivo optical imaging with rare earth doped Ca2Si5N8 persistent luminescence nanoparticles, Opt. Mater. Express, 2, 261, 10.1364/OME.2.000261
Lin, 2017, Site occupancy and near-infrared luminescence in Ca3Ga2Ge3O12: Cr3+ persistent phosphor, Adv. Opt. Mater., 5, 1700227, 10.1002/adom.201700227
Xue, 2017, Cr3+-activated Li5Zn8Al5Ge9O36: a near-infrared long-afterglow phosphor, J. Am. Ceram. Soc., 100, 3070, 10.1111/jace.14874
Norrbo, 2017, Lanthanide and heavy metal free long white persistent luminescence from Ti doped Li–Hackmanite: a versatile, lowcost material, Adv. Funct. Mater., 27, 1606547, 10.1002/adfm.201606547
Tu, 2018, Enhanced persistent luminescence of Li2ZnGeO4 host by rare-earth ions (Pr 3+, Nd3+ and Gd3+) doping, J. Mater. Sci. Mater. Electron., 29, 3146, 10.1007/s10854-017-8247-x
Ge, 2019, Design and synthesis of up-converted persistent luminescence Zn3Ga2SnO8: Cr3+, Yb3+, Er3+ phosphor, Optik, 188, 200, 10.1016/j.ijleo.2019.05.011
Liu, 2014, Detection of up-converted persistent luminescence in the near infrared emitted by the Zn3 Ga2 GeO8: Cr 3+, Yb 3+, Er3+ phosphor, Phys. Rev. Lett., 113, 177401, 10.1103/PhysRevLett.113.177401
Li, 2017, Near-infrared light activated persistent luminescence nanoparticles via upconversion, Nano Res., 10, 10.1007/s12274-017-1548-9
Jia, 2010, Cr3+-doped lanthanum gallogermanate phosphors with long persistent IR emission, Electrochem. Solid State Lett., 13, J32, 10.1149/1.3294520
Abdukayum, 2013, Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging, J. Am. Chem. Soc., 135, 14125, 10.1021/ja404243v
Wu, 2016, Penetrating peptide-bioconjugated persistent nanophosphors for long-term tracking of adipose-derived stem cells with superior signal-to-noise ratio, Anal. Chem., 88, 4114, 10.1021/acs.analchem.6b00449
Zhang, 2016, The evolution of gadolinium based contrast agents: from single-modality to multi-modality, Nanoscale, 8, 10491, 10.1039/C6NR00267F
Chang, 2006, Eu2+ activated long persistent strontium aluminate nano scaled phosphor prepared by precipitation method, J. Alloys Compd., 415, 220, 10.1016/j.jallcom.2005.04.219
Liao, 2020, Emerging graphitic carbon nitride-based materials for biomedical applications, Prog. Mater. Sci., 112, 100666, 10.1016/j.pmatsci.2020.100666
Yang, 2013, Hollow structured upconversion luminescent NaYF4: Yb3+, Er3+ nanospheres for cell imaging and targeted anti-cancer drug delivery, Biomaterials, 34, 1601, 10.1016/j.biomaterials.2012.11.004
Lisiecki, 2004, Conversion of infrared radiation into visible emission in YVO4 crystals doped with ytterbium and holmium, J. Appl. Phys., 96, 6323, 10.1063/1.1809270
Jain, 2018, Luminescent mesoporous silica nanoparticles for biomedical applications: synthesis and characterization, J. Lumin., 200, 200, 10.1016/j.jlumin.2018.04.020
Oliveira, 2019, Sustainable synthesis of luminescent CdTe quantum dots coated with modified silica mesoporous nanoparticles: towards new protein scavengers and smart drug delivery carriers, Dyes Pigments, 161, 360, 10.1016/j.dyepig.2018.09.047
Huang, 2017, Preparation and controlled drug delivery applications of mesoporous silica polymer nanocomposites through the visible light induced surface-initiated ATRP, Appl. Surf. Sci., 412, 571, 10.1016/j.apsusc.2017.04.026
Yang, 2008, Fabrication, characterization of spherical CaWO4: Ln@ MCM-41 (Ln= Eu3+, Dy3+, Sm3+, Er3+) composites and their applications as drug release systems, Microporous Mesoporous Mater., 116, 524, 10.1016/j.micromeso.2008.05.016
Lei, 2011, Controlled fabrication of SrMoO4 hierarchical nanosheets in a surfactant-assisted nonaqueous system, Mater. Res. Bull., 46, 601, 10.1016/j.materresbull.2010.12.021
Lin, 2011, Synthesis and luminescence properties of a novel red SrMoO4: Sm3+, R+ phosphor, Solid State Sci., 13, 579, 10.1016/j.solidstatesciences.2010.12.029
Xia, 2011, Facile morphology-controlled synthesis and luminescence properties of BaMoO4: Eu3+ microparticles and micro-rods obtained by a molten-salt reaction route, J. Nanosci. Nanotechnol., 11, 9612, 10.1166/jnn.2011.5298
Yu, 2011, Low temperature synthesis and photoluminescent properties of CaMoO4: Eu3+ red phosphor with uniform micro-assemblies, Mater. Res. Bull., 46, 1327, 10.1016/j.materresbull.2011.05.029
Lei, 2008, Hydrothermal synthesis and luminescence of CaMO4: RE3+ (M= W, Mo; RE= Eu, Tb) submicro-phosphors, J. Solid State Chem., 181, 855, 10.1016/j.jssc.2008.01.033
Wang, 2010, Simultaneous phase and size control of up conversion nanocrystals through lanthanide doping, Nature, 463, 1061, 10.1038/nature08777
Yin, 2010, Synthesis and photoluminescent properties of CaMoO4 nanoparticles at room temperature, Mater. Lett., 64, 602, 10.1016/j.matlet.2009.12.014
Yu, 2014, Profiling human protein degradome delineates cellular responses to proteasomal inhibition and reveals a feedback mechanism in regulating proteasome homeostasis, Cell Res., 24, 1214, 10.1038/cr.2014.122
Huang, 2007, Clinical significance of the p53 pathway and associated gene therapy in non-small cell lung cancers, Future Med., 83
Neukirchen, 2007, The proteasome inhibitor bortezomib acts differently in combination with p53 gene transfer or cytotoxic chemotherapy on NSCLC cells, Cancer Gene Ther., 14, 431, 10.1038/sj.cgt.7701029
Chira, 2015, Progresses towards safe and efficient gene therapy vectors, Oncotarget, 6, 30675, 10.18632/oncotarget.5169
Chen, 2011, Bortezomib as the first proteasome inhibitor anticancer drug: current status and future perspectives, Curr. Cancer Drug Targets, 11, 239, 10.2174/156800911794519752
Laubach, 2011, Hematology: bortezomib and dexamethasone induction for multiple myeloma, Nat. Rev. Clin. Oncol., 8, 8, 10.1038/nrclinonc.2010.206
Kane, 2007, Bortezomib for the treatment of mantle cell lymphoma, Clin. Cancer Res., 13, 5291, 10.1158/1078-0432.CCR-07-0871
Koprivnikar, 2012, Bortezomib: a proteasome inhibitor with an evolving role in select subtypes of B-cell non-Hodgkin’s lymphoma, Future Oncol., 8, 359, 10.2217/fon.12.23
Besse, 2012, Phase 2 study of frontline bortezomib in patients with advanced non-small cell lung cancer, Lung Cancer, 76, 78, 10.1016/j.lungcan.2011.09.006
Li, 2010, Phase II study of the proteasome inhibitor bortezomib (PS-341, Velcade) in chemotherapy-naïve patients with advanced stage non-small cell lung cancer (NSCLC), Lung Cancer, 68, 89, 10.1016/j.lungcan.2009.05.009
Schiff, 2009, Neurological adverse effects caused by cytotoxic and targeted therapies, Nat. Rev. Clin. Oncol., 6, 596, 10.1038/nrclinonc.2009.128
Grant, 2014, Bortezomib resistance and MUC1 in myeloma, Blood, 123, 2910, 10.1182/blood-2014-03-563882
Wang, 2015, Tumor extracellular acidity activated “off–on” release of bortezomib from a biocompatible dendrimer, Biomater. Sci., 3, 480, 10.1039/C4BM00365A
Swami, 2014, Engineered nanomedicine for myeloma and bone microenvironment targeting, Proc. Natl. Acad. Sci. U. S. A., 111, 10287, 10.1073/pnas.1401337111
Shen, 2014, The use of hollow mesoporous silica nanospheres to encapsulate bortezomib and improve efficacy for non-small cell lung cancer therapy, Biomaterials, 35, 316, 10.1016/j.biomaterials.2013.09.098
Thamake, 2012, Alendronate coated poly-lactic-co-glycolic acid (PLGA) nanoparticles for active targeting of metastatic breast cancer, Biomaterials, 33, 7164, 10.1016/j.biomaterials.2012.06.026
Ashley, 2014, Liposomal bortezomib nanoparticles via boronic ester prodrug formulation for improved therapeutic efficacy in vivo, J. Med. Chem., 57, 5282, 10.1021/jm500352v
Yeo, 2005, Formation of polymer particles with supercritical fluids: a review, J. Supercrit. Fluids, 34, 287, 10.1016/j.supflu.2004.10.006
Davies, 2008, Applications of supercritical CO2 in the fabrication of polymer systems for drug delivery and tissue engineering, Adv. Drug Deliv. Rev., 60, 373, 10.1016/j.addr.2006.12.001
Chattopadhyay, 2002, Supercritical CO2 based production of magnetically responsive micro- and nanoparticles for drug targeting, Ind. Eng. Chem. Res., 41, 6049, 10.1021/ie020205b
Jessop, 1999
Darr, 1999, New directions in inorganic metal-organic coordination chemistry in supercritical fluids, Chem. Rev., 99, 495, 10.1021/cr970036i
Momma, 2008, VESTA: a three-dimensional visualization system for electronic and structural analysis, J. Appl. Crystallogr., 41, 653, 10.1107/S0021889808012016
Emen, 2020, The photoluminescence and thermoluminescence characteristics of the Eu3+ doped CaMoO4: detailed kinetic analysis of TL glow curves, J. Lumin., 222, 117130, 10.1016/j.jlumin.2020.117130
Idris, 2011, Large, pore diameter MCM-41 and its application for lead removal from aqueous media, J. Hazard. Mater., 185, 898, 10.1016/j.jhazmat.2010.09.105
Jangra, 2016, Improved antimicrobial property and controlled drug release kinetics of silver sulfadiazine loaded ordered mesoporous silica, J. Asian Ceram. Soc., 4, 282, 10.1016/j.jascer.2016.05.005