LuAG:Pr codoped with Ho3+: Acceleration of Pr3+ decay by energy transfer

Radiation Measurements - Tập 124 - Trang 122-126 - 2019
Juraj Páterek1,2, Robert Král1, Jan Pejchal1, Radek Prokeš2, Martin Nikl1
1Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10/112, Prague, 162 00, Czech Republic
2Faculty of Nuclear Sciences and Physical Engineering, The Czech Technical University, Brehová 78/7, Prague, 115 19, Czech Republic

Tài liệu tham khảo

Blasse, 1994 Carnall, 1978, Energy level structure and transition probabilities in the spectra of the trivalent lanthanides in LaF3, Tech. Rep. Dexter, 1953, A theory of sensitized luminescence in solids, J. Chem. Phys., 21, 836, 10.1063/1.1699044 Hložek, 2012, X-ray fluorescence analysis of ancient and medieval brass artifacts from south Moravia, Appl. Radiat. Isot., 70, 1250, 10.1016/j.apradiso.2011.11.023 Jiang, 2018, Preparation and luminescence properties of Y3-yAl5-xGaxO12:Ce3+y phosphors, J. Mater. Sci. Mater. Electron., 29, 9045, 10.1007/s10854-018-8930-6 Kononets, 2017, Development of YAG:Ce,Mg and YAGG:Ce scintillation fibers, vol. 200, 114 Li, 2006, Fabrication of transparent cerium-doped lutetium aluminum garnet ceramics by co-precipitation routes, J. Am. Ceram. Soc., 0, 2356, 10.1111/j.1551-2916.2006.01036.x Malinowski, 2000, Optical transitions of Ho3+ in YAG, J. Alloy. Comp., 300–301, 389, 10.1016/S0925-8388(99)00770-7 Mares, 2003, Scintillation and spectroscopic properties of Ce3+-doped YAlO3 and Lux(RE)1-xAlO3(RE=Y3+ and Gd3+) scintillators, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip., 498, 312, 10.1016/S0168-9002(02)01996-4 Mares, 2004, Scintillation response of Ce-doped or intrinsic scintillating crystals in the range up to 1MeV, Radiat. Meas., 38, 353, 10.1016/j.radmeas.2004.04.004 Nelder, 1965, A simplex method for function minimization, Comput. J., 7, 308, 10.1093/comjnl/7.4.308 Nikl, 2006, Scintillation detectors for X-rays, Meas. Sci. Technol., 17, R37, 10.1088/0957-0233/17/4/R01 Nikl, 2015, Recent R&D trends in inorganic single-crystal scintillator materials for radiation detection, Adv. Optic. Mater., 3, 463, 10.1002/adom.201400571 Nikl, 2000, Traps and timing characteristics of LuAG:Ce3+ scintillator, Physica Status Solidi (a), 181, R10, 10.1002/1521-396X(200009)181:1<R10::AID-PSSA999910>3.0.CO;2-9 Nikl, 2013, Development of LuAG-based scintillator crystals – a review, Prog. Cryst. Growth Char. Mater., 59, 47, 10.1016/j.pcrysgrow.2013.02.001 Nikl, 2014, Defect engineering in Ce-doped aluminum garnet single crystal scintillators, Cryst. Growth Des., 14, 4827, 10.1021/cg501005s Ogino, 2006, Growth and scintillation properties of Pr-doped Lu3Al5O12 crystals, J. Cryst. Growth, 287, 335, 10.1016/j.jcrysgro.2005.11.023 Ogino, 2009, Suppression of defect related host luminescence in LuAG single crystals, Phys. Procedia, 2, 191, 10.1016/j.phpro.2009.07.011 Sugiyama, 2012, Dopant segregation in rare earth doped lutetium aluminum garnet single crystals grown by the micro-pulling down method, J. Cryst. Growth, 352, 110, 10.1016/j.jcrysgro.2011.12.039 Xia, 2017, Ce3+-doped garnet phosphors: composition modification, luminescence properties and applications, Chem. Soc. Rev., 46, 275, 10.1039/C6CS00551A Xu, 2014, Ce-doped LuAG single-crystal fibers grown from the melt for high-energy physics, Acta Mater., 67, 232, 10.1016/j.actamat.2013.12.040 Yanagida, 2011, Basic study of single crystal fibers of Pr:Lu3Al5O12 scintillator for gamma-ray imaging applications, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip., 652, 256, 10.1016/j.nima.2010.08.114 Yoshikawa, 2009, Growth of optical crystals by the micro-pulling-down method, MRS Bull., 34, 266, 10.1557/mrs2009.77