Lower bounds for the chromatic number of certain Kneser-type hypergraphs

European Journal of Combinatorics - Tập 110 - Trang 103664 - 2023
Soheil Azarpendar1, Amir Jafari1
1Department of Mathematical Sciences, Sharif University of Technology, Tehran, Iran

Tài liệu tham khảo

Abyazi Sani, 2018, A new lower bound for the chromatic number of general Kneser hypergraphs, European J. Combin., 71, 229, 10.1016/j.ejc.2018.03.007 Alishahi, 2015, On the chromatic number of general Kneser hypergraphs, J. Combin. Theory Ser. B, 115, 186, 10.1016/j.jctb.2015.05.010 Alon, 1986, The chromatic number of Kneser hypergraphs, Trans. Amer. Math. Soc., 298, 359, 10.1090/S0002-9947-1986-0857448-8 Aslam, 2019, On the generalized Erdős-Kneser conjecture: proofs and reductions, J. Combin. Theory Ser. B, 135, 227, 10.1016/j.jctb.2018.08.004 Azarpendar, 2021, On some topological and combinatorial lower bounds on the chromatic number of Kneser type hypergraphs, J. Combin. Theory Ser. B, 146, 372, 10.1016/j.jctb.2020.09.014 Daneshpajouh, 2019, On the chromatic number of generalized Kneser hypergraph, European J. Combin., 81, 150, 10.1016/j.ejc.2019.05.003 Frick, 2020, Chromatic numbers of stable Kneser hypergraphs via topological Tverberg-type theorems, Int. Math. Res. Not. IMRN, 2020, 4037, 10.1093/imrn/rny135 Kriz, 1992, A correction to: Equivariant cohomology and lower bounds for chromatic numbers trans, Amer. Math. Soc., 333, 567, 10.1090/S0002-9947-1992-1081939-3 Kriz, 1992, Equivariant cohomology and lower bounds for chromatic numbers, Trans. Amer. Math. Soc., 333, 567, 10.1090/S0002-9947-1992-1081939-3 Meunier, 2011, The chromatic number of almost stable Kneser hypergraphs, J. Combin. Theory Ser. A, 118, 1820, 10.1016/j.jcta.2011.02.010 Sarkaria, 1990, A generalized Kneser conjecture, J. Combin. Theory Ser. B, 49, 236, 10.1016/0095-8956(90)90029-Y Ziegler, 2002, Generalized Kneser coloring theorems with combinatorial proofs, Invent. Math., 147, 671, 10.1007/s002220100188 Ziegler, 2006, Erratum: Generalized Kneser coloring theorems with combinatorial proofs, Invent. Math., 163, 227, 10.1007/s00222-005-0466-8