Low voltage electrolyte-gated organic transistors making use of high surface area activated carbon gate electrodes

Journal of Materials Chemistry C - Tập 2 Số 28 - Trang 5690-5694
Jonathan Sayago1,2,3, Francesca Soavi4,5,6, Yuvaraj Sivalingam1,2,3, Fabio Cicoira1,7,3, Clara Santato1,2,3
1Canada
2Département de Génie physique
3École, Polytechnique de Montréal
4Italy
5Department of Chemistry “Giacomo Ciamician”
6università di Bologna
7Département de génie chimique

Tóm tắt

The use of high surface area, low cost, activated carbon gate electrodes enables low voltage (sub-1 V) operation in ionic liquid-gated organic transistors and renders unnecessary the presence of an external reference electrode to monitor the channel potential.

Từ khóa


Tài liệu tham khảo

Kim, 2013, Adv. Mater., 25, 1822, 10.1002/adma.201202790

Fujimoto, 2013, Phys. Chem. Chem. Phys., 15, 8983, 10.1039/c3cp50755f

Tarabella, 2013, Chem. Sci., 4, 1395, 10.1039/c2sc21740f

I. S. Martinez and S.Baldelli, in Ionic Liquids: From Knowledge to Application, ed. N. V. Plechkova, R. D. Rogers and K. R. Seddon, ACS Symposium Series, 2009, vol. 1030

Organic Electronics II: More Materials and Applications, ed. H. Klauk, Wiley VCH, 2012

Organic Electronics: Emerging Concepts and Technologies, ed. F. Cicoira and C. Santato, Wiley VCH, 2013

Shimotani, 2006, Appl. Phys. Lett., 89, 203501, 10.1063/1.2387884

Panzer, 2006, Appl. Phys. Lett., 88, 203504, 10.1063/1.2204846

Ono, 2010, Appl. Phys. Lett., 97, 143307, 10.1063/1.3493190

Panzer, 2005, J. Am. Chem. Soc., 127, 6960, 10.1021/ja051579+

Paulsen, 2012, J. Phys. Chem. C, 116, 3132, 10.1021/jp2093934

Liu, 2012, J. Am. Chem. Soc., 134, 901, 10.1021/ja210936n

Bhat, 2012, Chem. Mater., 24, 4060, 10.1021/cm301610w

Cicoira, 2010, Adv. Mater., 22, 1012, 10.1002/adma.200902329

Yuan, 2010, J. Am. Chem. Soc., 132, 18402, 10.1021/ja108912x

Thiemann, 2012, J. Phys. Chem. C, 116, 13536, 10.1021/jp3024233

Jeong, 2013, Science, 339, 1402, 10.1126/science.1230512

Ruzmetov, 2010, J. Appl. Phys., 107, 114516, 10.1063/1.3408899

Ji, 2012, Nano Lett., 12, 2988, 10.1021/nl300741h

Nasr, 2013, J. Mater. Chem. C, 1, 2534, 10.1039/c3tc00061c

Alarcón-Lladó, 2011, Appl. Phys. Lett., 99, 102106, 10.1063/1.3634049

Kang, 2010, Nano Lett., 10, 3727, 10.1021/nl102356x

Kang, 2009, Nano Lett., 9, 2848

B. E. Conway , Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Springer, 1999

Tarabella, 2010, Appl. Phys. Lett., 97, 123304, 10.1063/1.3491216

M. Lazzari , C.Arbizzani, F.Soavi and M.Mastragostino, in Supercapacitors, ed. F. Béguin and E. Frąckowiak, Wiley-VCH Verlag GmbH & Co. KGaA, 2013, pp. 289–306

Weingarth, 2012, Electrochem. Commun., 18, 116, 10.1016/j.elecom.2012.02.040

Ye, 2013, J. Mater. Chem. A, 1, 2719, 10.1039/C2TA00126H

Lazzari, 2007, Electrochem. Commun., 9, 1567, 10.1016/j.elecom.2007.02.021

Xia, 2009, Adv. Mater., 21, 2174, 10.1002/adma.200803437

Xia, 2009, Appl. Phys. Lett., 94, 013304, 10.1063/1.3058694

Sakanoue, 2004, Appl. Phys. Lett., 84, 3037, 10.1063/1.1710713

Data Measured and Provided by IoLiTec Ionic Liquids Technologies GmbH, Heilbronn/Germany, 2012