Low velocity impact response of GLARE laminates based on a new efficient implementation of Puck's criterion
Tài liệu tham khảo
Vlot, 2001
Shankar, 2010, Fiber metal laminates-matching the best in composites and metals, Materials & Processing Report, 9, 114
Vlot, 1999, Towards application of fibre metal laminates in large aircraft, Aircraft Eng. Aero. Technol., 71, 558, 10.1108/00022669910303711
Gunnink, 1987, Design studies of primary aircraft structures in ARALL laminates, J. Aircr., 25, 1023, 10.2514/3.45698
Chai, 2014, Low velocity impact response of fibre-metal laminates – a review, Compos. Struct., 107, 363, 10.1016/j.compstruct.2013.08.003
Liao, 2017, Finite element analysis of dynamic progressive failure properties of GLARE hybrid laminates under low-velocity impact, J. Compos. Mater.
Richardson, 1996, Review of low-velocity impact properties of composite materials, Composites Part A Applied Science & Manufacturing, 27, 1123, 10.1016/1359-835X(96)00074-7
Fan, 2011, Numerical modelling of perforation failure in fibre metal laminates subjected to low velocity impact loading, Compos. Struct., 93, 2430, 10.1016/j.compstruct.2011.04.008
Bienias, 2016, Low-velocity impact resistance of aluminium glass laminates – experimental and numerical investigation, Compos. Struct., 152, 339, 10.1016/j.compstruct.2016.05.056
Yu, 2015, Low velocity impact of carbon fiber aluminum laminates, Compos. Struct., 119, 757, 10.1016/j.compstruct.2014.09.054
Seyed Yaghoubi, 2012, Low-velocity impact on GLARE 5 fiber-metal laminates: influences of specimen thickness and impactor mass, J. Aerosp. Eng., 25, 409, 10.1061/(ASCE)AS.1943-5525.0000134
Khoramishad, 2015, Effects of mechanical and geometrical properties of adhesive and metal layers on low-velocity impact behavior of metal laminate structures, J. Adhes. Sci. Technol., 29, 592, 10.1080/01694243.2014.999610
Khoramishad, 2018, Effect of stacking sequence on low-velocity impact behavior of metal laminates, Phys. Mesomech., 21, 140, 10.1134/S1029959918020078
Reiner, 2016, Experimental and numerical analysis of drop-weight low-velocity impact tests on hybrid titanium composite laminates, J. Compos. Mater., 50, 10.1177/0021998315624002
Sharma, 2018, Effect of through thickness metal layer distribution on the low velocity impact response of fiber metal laminates, Polym. Test., 65, 301, 10.1016/j.polymertesting.2017.12.001
Shi, 2012, Modelling damage evolution in composite laminates subjected to low velocity impact, Compos. Struct., 94, 2902, 10.1016/j.compstruct.2012.03.039
Wiegand, 2008, An algorithm for determination of the fracture angle for the three-dimensional Puck matrix failure criterion for UD composites, Compos. Sci. Technol., 68, 2511, 10.1016/j.compscitech.2008.05.004
Schirmaier, 2014, A new efficient and reliable algorithm to determine the fracture angle for Puck's 3D matrix failure criterion for UD composites, Compos. Sci. Technol., 100, 19, 10.1016/j.compscitech.2014.05.033
Thomson, 2017, Experimental and numerical study of strain-rate effects on the IFF fracture angle using a new efficient implementation of Puck's criterion, Compos. Struct., 181
Wang, 2018, Finite element analysis of composite laminates subjected to low-velocity impact based on multiple failure criteria, Mater. Res. Express, 5
Johnson, 1983, A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, 7th Int Symp Ballist, 541
Pärnänen, 2012, Applicability of AZ31B-H24 magnesium in Fibre Metal Laminates – an experimental impact research, Composites Part A Applied Science & Manufacturing, 43, 1578, 10.1016/j.compositesa.2012.04.008
Guo, 2013, Nonlinear progressive damage model for composite laminates used for low-velocity impact, Appl. Math. Mech., 34, 1145, 10.1007/s10483-013-1733-7
Xin, 2015, A progressive damage model for fiber reinforced plastic composites subjected to impact loading, Int. J. Impact Eng., 75, 40, 10.1016/j.ijimpeng.2014.07.014
Pederson, 2008
Puck, 2002, Failure analysis of FRP laminates by means of physically based phenomenological models, Compos. Sci. Technol., 62, 1633, 10.1016/S0266-3538(01)00208-1
Hinton, 1998, Predicting failure in composite laminates: the background to the exercise, Compos. Sci. Technol., 58, 1001, 10.1016/S0266-3538(98)00074-8
Soden, 1998, A comparison of the predictive capabilities of current failure theories for composite laminates, Compos. Sci. Technol., 58, 1225, 10.1016/S0266-3538(98)00077-3
Li, 2017, Failure prediction of T-stiffened composite panels subjected to compression after edge impact, Compos. Struct., 162, 210, 10.1016/j.compstruct.2016.12.004
Camanho, 2003, Numerical simulation of mixed-mode progressive delamination in composite materials, J. Compos. Mater., 37, 1415, 10.1177/0021998303034505
Benzeggagh, 1996, Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus, Compos. Sci. Technol., 56, 439, 10.1016/0266-3538(96)00005-X
Liu, 2016, Finite element analysis of dynamic progressive failure of carbon fiber composite laminates under low velocity impact, Compos. Struct., 149, 408, 10.1016/j.compstruct.2016.04.012
González, 2011, Effects of ply clustering in laminated composite plates under low-velocity impact loading, Compos. Sci. Technol., 71, 805, 10.1016/j.compscitech.2010.12.018
Ferrante, 2016, Low velocity impact response of basalt-aluminium fibre metal laminates, Mater. Des., 98, 98, 10.1016/j.matdes.2016.03.002