Low temperature synthesis of MnO2 nanostructures for supercapacitor application

Materials Science for Energy Technologies - Tập 3 - Trang 566-574 - 2020
Yogesh Kumar1, Seema Chopra1, A. Gupta1, Y. Kumar2, S.J. Uke3, S.P. Mardikar4
1Department of Physics G.D. Goenka University, Gurgaon, Haryana 122002, India
2Department of Physics, ARSD College, University of Delhi, Delhi, 110021, India
3Department of Physics, JDPS College, SGB Amravati University, Amravati 444803 India
4Department of Chemistry, Smt. R S College, SGB Amravati University, Amravati 444705 India

Tài liệu tham khảo

Kumar, 2016, 3D urchin-shaped Ni3(VO4)2 hollow nanospheres for high-performance asymmetric supercapacitor applications, J. Mater. Chem. A., 4, 9822, 10.1039/C6TA03519A Chaudhari, 2014, Cube-like α-Fe2O3 Supported on ordered multimodal porous carbon as high performance electrode material for supercapacitors, ChemSusChem, 7, 3102, 10.1002/cssc.201402526 Zhu, 2018, Structural directed growth of ultrathin parallel birnessite on β-MnO2 for high-performance asymmetric supercapacitors, ACS Nano, 12, 1033, 10.1021/acsnano.7b03431 Simon, 2008, Materials for electrochemical capacitors, Nat. Mater., 7, 845, 10.1038/nmat2297 Uke, 2019, PEG Assisted Hydrothermal Fabrication of Undoped and Cr Doped NiCo2O4 Nanorods and Their Electrochemical Performance for Supercapacitor Application, Adv. Sci. Eng. Med., 11, 357, 10.1166/asem.2019.2367 Uke, 2017, Recent Advancements in the Cobalt Oxides, Manganese Oxides, and Their Composite As an electrode Material for Supercapacitor: A Review, Front. Mater., 4, 21, 10.3389/fmats.2017.00021 Dubal, 2013, All-solid-state flexible thin film supercapacitor based on Mn3O4 stacked nanosheets with gel electrolyte, Energy, 51, 407, 10.1016/j.energy.2012.11.021 Uke, 2020, Morphology dependant electrochemical performance of hydrothermally synthesized NiCo2O4 nanomorphs, Mater. Sci. Energy Technol., 3, 289 Uke, 2018, Triethanol Amine Ethoxylate (TEA-EO) Driven Controlled Synthesis of NiCo2O4 Nanostructures, Their Characterization and Supercapacitor Performance, Adv. Sci. Eng. Med., 10, 1174, 10.1166/asem.2018.2290 H. Xia, Y. Shirley Meng, G. Yuan, C. Cui, L. Lu, A Symmetric RuO2∕RuO2 Supercapacitor Operating at 1.6 V by Using a Neutral Aqueous Electrolyte, Electrochem. Solid-State Lett. 15 (2012) A60. Doi: 10.1149/2.023204esl. Kim, 2013, Facile route to an efficient NiO supercapacitor with a three-dimensional nanonetwork morphology, ACS Appl. Mater. Interfaces., 5, 1596, 10.1021/am3021894 Jayalakshmi, 2008, Simple capacitors to supercapacitors-an overview, Int. J. Electrochem. Sci., 3, 1196, 10.1016/S1452-3981(23)15517-9 Lu, 2012, Hydrogenated TiO2 nanotube arrays for supercapacitors, Nano Lett., 12, 1690, 10.1021/nl300173j Jiang, 2018, All pseudocapacitive MXene-RuO2 asymmetric supercapacitors, Adv. Energy Mater., 8, 1703043, 10.1002/aenm.201703043 Kulal, 2011, Chemical synthesis of Fe2O3 thin films for supercapacitor application, J. Alloys Comp., 509, 2567, 10.1016/j.jallcom.2010.11.091 Xia, 2019, Synthesis of porous δ-MnO2 nanosheets and their supercapacitor performance, J. Electroanal. Chem., 839, 25, 10.1016/j.jelechem.2019.02.059 Padmanathan, 2014, Mesoporous MnCo 2 O 4 spinel oxide nanostructure synthesized by solvothermal technique for supercapacitor, Ionics, 20, 479, 10.1007/s11581-013-1009-8 He, 2013, Reduced graphene oxide-CoFe 2 O 4 composites for supercapacitor electrode, Russ. J. Electrochem., 49, 359, 10.1134/S1023193513040101 Ahuja, 2015, Solid-state, high-performance supercapacitor using graphene nanoribbons embedded with zinc manganite, J. Mater. Chem. A, 3, 4931, 10.1039/C4TA05865H Yu, 2013, Hierarchical NiCo 2 O 4@ MnO 2 core–shell heterostructured nanowire arrays on Ni foam as high-performance supercapacitor electrodes, Chem. Commun., 49, 137, 10.1039/C2CC37117K Lin, 2019, Hierarchical Fe2O3 and NiO nanotube arrays as advanced anode and cathode electrodes for high-performance asymmetric supercapacitors, J. Alloy. Compd., 794, 255, 10.1016/j.jallcom.2019.04.273 Liu, 2013, New energy storage option: toward ZnCo2O4 nanorods/nickel foam architectures for high-performance supercapacitors, ACS Appl. Mater. Interfaces, 5, 10011, 10.1021/am402339d Niu, 2013, All-solid-state flexible ultrathin micro-supercapacitors based on graphene, Adv. Mater., 25, 4035, 10.1002/adma.201301332 Huang, 2013, Controllable syntheses of α-and δ-MnO2 as cathode catalysts for zinc-air battery, Electrochim. Acta, 99, 161, 10.1016/j.electacta.2013.03.088 Chen, 2010, Graphene oxide- MnO2 nanocomposites for supercapacitors, ACS Nano, 4, 2822, 10.1021/nn901311t Kumar, 2016, An efficient α-MnO2 nanorods forests electrode for electrochemical capacitors with neutral aqueous electrolytes, Electrochim. Acta, 220, 712, 10.1016/j.electacta.2016.10.168 Prasad, 2018, Synthesis of MoS2-reduced graphene oxide/Fe3O4 nanocomposite for enhanced electromagnetic interference shielding effectiveness, Mater. Res. Express, 5, 10.1088/2053-1591/aac0c2 Huang, 2015, Flexible cathodes and multifunctional interlayers based on carbonized bacterial cellulose for high-performance lithium–sulfur batteries, J. Mater. Chem. A, 3, 10910, 10.1039/C5TA01515D Huang, 2010, Highly crystalline macroporous β-MnO2: Hydrothermal synthesis and application in lithium battery, Electrochim. Acta, 55, 4915, 10.1016/j.electacta.2010.03.090 Subramanian, 2005, Hydrothermal Synthesis and Pseudocapacitance Properties of MnO2 Nanostructures, J. Phys. Chem. B., 109, 20207, 10.1021/jp0543330 Toupin, 2004, Charge Storage Mechanism of MnO 2 Electrode Used in Aqueous Electrochemical Capacitor, Chem. Mater., 16, 3184, 10.1021/cm049649j Lee, 1999, Supercapacitor Behavior with KCl Electrolyte, J. Solid State Chem., 144, 220, 10.1006/jssc.1998.8128 Rao, 2019, Effect of carbon nanofibers on electrode performance of symmetric supercapcitors with composite α-MnO2 nanorods, J. Alloy. Compd., 789, 518, 10.1016/j.jallcom.2019.03.011 Xie, 2013, Porous MnO2 for use in a high performance supercapacitor: replication of a 3D graphene network as a reactive template, Chem. Commun., 49, 11092, 10.1039/c3cc46867d C. Wan, L. Yuan, H. Shen, Effects of Electrode Mass-loading on the Electrochemical Properties of Porous MnO2 for Electrochemical Supercapacitor, n.d. Sinan, 2020, PEDOT:PSS Enhanced Electrochemical Capacitive Performance of Graphene-Templated δ-MnO2, J. Electrochem. Sci. Technol., 11, 50, 10.33961/jecst.2019.03475 Y. Huang, D. Weng, S. Kang, J. Lu, Controllable Synthesis of Nanostructured MnO2 as Electrode Material of Supercapacitors, (2020). Doi: 10.1166/jnn.2020.18497. Relekar, 2018, Effect of Electrodeposition Potential on Surface Free Energy and Supercapacitance of MnO2 Thin Films, J. Elec. Mater., 47, 2731, 10.1007/s11664-018-6109-9 Gueon, 2017, MnO2 Nanoflake-Shelled Carbon Nanotube Particles for High-Performance Supercapacitors, ACS Sustainable Chem. Eng., 5, 2445, 10.1021/acssuschemeng.6b02803 Wan, 2018, Facial Synthesis of 3D MnO2 Nanofibers Sponge and Its Application in Supercapacitors, Int. J. Electrochem. Sci., 13, 12320, 10.20964/2018.12.24 Zhang, 2006, Straight and thin ZnO nanorods: hectogram-scale synthesis at low temperature and cathodoluminescence, J. Phys. Chem. B, 110, 827, 10.1021/jp055351k Babu, 2015, Microwave synthesis and effect of CTAB on ferromagnetic properties of NiO, Co3O4 and NiCo2O4 nanostructures, Appl. Phys. A, 119, 219, 10.1007/s00339-014-8951-9 Xiao, 2014, NiCo2O4 nanostructures with various morphologies as the high-performance electrocatalysts for H2O2 electroreduction and electrooxidation, J. Electroanal. Chem., 729, 103, 10.1016/j.jelechem.2014.07.010 Jiang, 2012, Hierarchical porous NiCo 2 O 4 nanowires for high-rate supercapacitors, Chem. Commun., 48, 4465, 10.1039/c2cc31418e Chaubal, 2011, Nonionic polymeric surfactant template for mesoporous NiCo 2 O 4 formation, J. Porous Mater., 18, 177, 10.1007/s10934-010-9368-2 Babu, 2014, Surfactant assisted growth and optical studies of NiCo2O4 nanostructures through microwave heating method, Int. J. Sci. Eng. Appl., 1, 17 Cai, 2015, Construction of desirable NiCo2S4 nanotube arrays on nickel foam substrate for pseudocapacitors with enhanced performance, Electrochim. Acta, 151, 35, 10.1016/j.electacta.2014.11.040 Pang, 2015, Rapid synthesis of graphene/amorphous α-MnO2 composite with enhanced electrochemical performance for electrochemical capacitor, Mater. Sci. Eng., B, 194, 41, 10.1016/j.mseb.2014.12.028 B.E. Warren, B.L. Averbach, The separation of cold-work distortion and particle size broadening in X-ray patterns, J. Appl. Phys. 23 (1952) 497–497. Stuart, 2008 M. Mylarappa, V.V. Lakshmi, K.V. Mahesh, H.P. Nagaswarupa, N. Raghavendra, A facile hydrothermal recovery of nano sealed MnO2 particle from waste batteries: An advanced material for electrochemical and environmental applications, in: IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2016: p. 012178. Belardi, 2011, Characterization of spent zinc–carbon and alkaline batteries by SEM-EDS, TGA/DTA and XRPD analysis, Thermochimica Acta., 526, 169, 10.1016/j.tca.2011.09.012 Chodankar, 2015, Flexible all-solid-state MnO2 thin films based symmetric supercapacitors, Electrochim. Acta, 165, 338, 10.1016/j.electacta.2015.02.246 Li, 2010, Mesoporous MnO2/carbon aerogel composites as promising electrode materials for high-performance supercapacitors, Langmuir, 26, 2209, 10.1021/la903947c Li, 2018, Capillarity-driven assembly of single-walled carbon nanotubes onto nickel wires for flexible wire-shaped supercapacitors, Mater. Sci. Energy Technol., 1, 91 Hashmi, 1997, Polymer electrolyte based solid state redox supercapacitors with poly (3-methyl thiophene) and polypyrrole conducting polymer electrodes, Ionics, 3, 177, 10.1007/BF02375614 Tang, 2015, Enhancing the energy density of asymmetric stretchable supercapacitor based on wrinkled CNT@ MnO2 cathode and CNT@ polypyrrole anode, ACS Appl. Mater. Interfaces, 7, 15303, 10.1021/acsami.5b03148 Yao, 2018, A novel two-dimensional coordination polymer-polypyrrole hybrid material as a high-performance electrode for flexible supercapacitor, Chem. Eng. J., 334, 2547, 10.1016/j.cej.2017.12.013 Dubal, 2012, Galvanostatically deposited Fe: MnO2 electrodes for supercapacitor application, J. Phys. Chem. Solids, 73, 18, 10.1016/j.jpcs.2011.09.005 Subramanian, 2006, Nanostructured MnO2: Hydrothermal synthesis and electrochemical properties as a supercapacitor electrode material, J. Power Sources, 159, 361, 10.1016/j.jpowsour.2006.04.012 T. Brousse, M. Toupin, R. Dugas, L. Athouël, O. Crosnier, Crystalline MnO2 as Possible Alternatives to Amorphous Compounds in Electrochemical Supercapacitors, J. Electrochem. Soc. (n.d.) 11. Xu, 2018, Hierarchical hollow MnO2 nanofibers with enhanced supercapacitor performance, J. Colloid Interface Sci., 513, 448, 10.1016/j.jcis.2017.11.052 Ghodbane, 2009, Microstructural Effects on Charge-Storage Properties in MnO 2 -Based Electrochemical Supercapacitors, ACS Appl. Mater. Interfaces., 1, 1130, 10.1021/am900094e Wu, 2018, Enlarged working potential window for MnO2 supercapacitors with neutral aqueous electrolytes, Appl. Surf. Sci., 459, 430, 10.1016/j.apsusc.2018.07.147 Xiong, 2018, Three-Dimensional Graphene/MnO 2 Nanowalls Hybrid for High-Efficiency Electrochemical Supercapacitors, NANO, 13, 1850013, 10.1142/S1793292018500133 Electrochemical Performance of MnO2 for Energy Storage Supercapacitors in Solid-State Design | Obeidat | International Journal of Renewable Energy Research (IJRER), (n.d.). https://www.ijrer.com/index.php/ijrer/article/view/7248/pdf (accessed February 19, 2020). Li, 2017, Snowflake-like core-shell α-MnO2@ δ-MnO2 for high performance asymmetric supercapacitor, Electrochim. Acta, 251, 344, 10.1016/j.electacta.2017.08.146 Wu, 2019, Controllable synthesis of MnO2 with different structures for supercapacitor electrodes, J. Electroanal. Chem., 848, 10.1016/j.jelechem.2019.113332 Dubal, 2017, Ultrathin Mesoporous RuCo2O4 Nanoflakes: An Advanced Electrode for High-Performance Asymmetric Supercapacitors, ChemSusChem, 10, 1771, 10.1002/cssc.201700001