Low-temperature structure and thermoelectric properties of ductile Ag2S0.4Te0.6
Tài liệu tham khảo
Snyder, 2008, Complex thermoelectric materials, Nat. Mater., 7, 105, 10.1038/nmat2090
Zhu, 2017, Compromise and Synergy in high-efficiency thermoelectric materials, Adv. Mater., 29, 10.1002/adma.201605884
Tan, 2016, Rationally designing high-performance bulk thermoelectric materials, Chem. Rev, 116, 12123, 10.1021/acs.chemrev.6b00255
Huang, 2020, Fiber-based energy conversion devices for human-body energy harvesting, Adv. Mater., 32
Rolland, 2013, Paper as a novel material platform for devices, MRS Bull, 38, 299, 10.1557/mrs.2013.58
Xie, 2009, Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys, Appl. Phys. Lett., 94, 10.1063/1.3097026
Pan, 2018, Melt-centrifuged (Bi,Sb)2Te3: engineering microstructure toward high thermoelectric efficiency, Adv. Mater., 30, 1802016, 10.1002/adma.201802016
Wei, 2020, Simultaneously increased carrier concentration and mobility in p-type Bi0.5Sb1.5Te3 throng Cd doping, J. Alloy. Compd., 830, 10.1016/j.jallcom.2020.154625
Jiang, 2022, High figure-of-merit and power generation in high-entropy GeTe-based thermoelectrics, Science, 377, 208, 10.1126/science.abq5815
Dong, 2019, Medium-temperature thermoelectric GeTe: vacancy suppression and band structure engineering leading to high performance, Energy Environ. Sci., 12, 1396, 10.1039/C9EE00317G
Hong, 2019, Thermoelectric GeTe with diverse degrees of freedom having secured superhigh performance, Adv. Mater., 31, 10.1002/adma.201807071
Gelbstein, 2008, Mechanical properties of PbTe-based thermoelectric semiconductors, Scripta Mater., 58, 251, 10.1016/j.scriptamat.2007.10.012
You, 2019, Realization of higher thermoelectric performance by dynamic doping of copper in n-type PbTe, Energy Environ. Sci., 12, 3089, 10.1039/C9EE01137D
Biswas, 2012, High-performance bulk thermoelectrics with all-scale hierarchical architectures, Nature, 489, 414, 10.1038/nature11439
Liang, 2021, Ductile inorganic amorphous/crystalline composite Ag4TeS with phonon-glass electron-crystal transport behavior and excellent stability of high thermoelectric performance on plastic deformation, Acta Mater., 218, 10.1016/j.actamat.2021.117231
Chen, 2021, Room-temperature plastic inorganic semiconductors for flexible and deformable electronics, InfoMat, 3, 22, 10.1002/inf2.12149
Liang, 2019, Flexible thermoelectrics: from silver chalcogenides to full-inorganic devices, Energy Environ. Sci., 12, 2983, 10.1039/C9EE01777A
Shi, 2018, Room-temperature ductile inorganic semiconductor, Nat. Mater., 17, 421, 10.1038/s41563-018-0047-z
Liang, 2020, Crystalline structure-dependent mechanical and thermoelectric performance in Ag2Se1-xSx system, Research, 2020, 10.34133/2020/6591981
Wang, 2019, Aguilarite Ag4SSe thermoelectric material: natural mineral with low lattice thermal conductivity, ACS Appl. Mater. Interfaces, 11, 12632, 10.1021/acsami.8b22741
Gao, 2021, P-type plastic inorganic thermoelectric materials, Adv. Energy Mater., 11
He, 2020, Semiconductor glass with superior flexibility and high room temperature thermoelectric performance, Sci. Adv., 6, eaaz8423, 10.1126/sciadv.aaz8423
Yang, 2021, Ductile Ag20S7Te3 with excellent shape-conformability and high thermoelectric performance, Adv. Mater., 33
Li, 2022, Origin of ductility in amorphous Ag2S0.4Te0.6, Appl. Phys. Lett., 120
Jonson, 1980, Mott's formula for the thermopower and the Wiedemann-Franz law, Phys. Rev. B, 21, 4223, 10.1103/PhysRevB.21.4223
Navrátil, 2001, Transport properties of Bi2-xInxSe3 single crystals, J. Solid State Chem., 160, 474, 10.1006/jssc.2001.9323
Wang, 2018, Low temperature thermoelectric properties of p-type doped single-crystalline SnSe, Appl. Phys. Lett., 112
Zhou, 2020, Thermal conductivity of amorphous materials, Adv. Funct. Mater., 30, 10.1002/adfm.202070048
Cahill, 1989, Heat flow and lattice vibrations in glasses, Solid State Commun, 70, 927, 10.1016/0038-1098(89)90630-3
Pompe, 1988, Thermal conductivity of amorphous Si at low temperatures, Phys. Status Solidi B-Basic Solid State Phys., 147, 103, 10.1002/pssb.2221470109
Liu, 2017, The microscopic origin of low thermal conductivity for enhanced thermoelectric performance of Yb doped MgAgSb, Acta Mater., 128, 227, 10.1016/j.actamat.2017.02.015
Callaway, 1959, Model for lattice thermal conductivity at low temperatures, Phys. Rev., 113, 1046, 10.1103/PhysRev.113.1046
Wei, 2016, Minimum thermal conductivity in weak topological insulators with bismuth-based stack structure, Adv. Funct. Mater., 26, 5360, 10.1002/adfm.201600718
Tian, 2009, Low temperature specific heat and thermal conductivity of bulk metallic glass (Cu50Zr50)94Al6, Solid State Commun., 149, 1527, 10.1016/j.ssc.2009.06.004
Wagner, 1963, Influence of localized modes on thermal conductivity, Phys. Rev., 131, 1443, 10.1103/PhysRev.131.1443
Zhou, 2006, On the existence of Einstein oscillators and thermal conductivity in bulk metallic glass, Appl. Phys. Lett., 89, 10.1063/1.2234281
Holzwarth, 2011, The Scherrer equation versus the 'Debye-Scherrer equation, Nat. Nanotechnol., 6, 10.1038/nnano.2011.145
Nakamura, 2015, Anomalous reduction of thermal conductivity in coherent nanocrystal architecture for silicon thermoelectric material, Nano Energy, 12, 845, 10.1016/j.nanoen.2014.11.029
Emin, 2019, Polaron transport of amorphous semiconductors with embedded crystallites, Philos. Mag., 99, 1225, 10.1080/14786435.2019.1579375
Delgado, 1986, Electron transport in La100-xAlx metallic glasses, Phys. Rev. B, 34, 8288, 10.1103/PhysRevB.34.8288
Rathnayaka, 1986, Electronic-transport properties of amorphous Cu-Ti films, Phys. Rev. B, 33, 889, 10.1103/PhysRevB.33.889
Howson, 1988, The electron transport properties of metallic glasses, Phys. Rep., 170, 265, 10.1016/0370-1573(88)90145-7
Gallagher, 1984, The temperature dependence of the hall coefficient of metallic glasses: further evidence for electron-electron interaction effects, J. Phys. F, 14, L225, 10.1088/0305-4608/14/11/002
Gallagher, 1981, Thermoelectric powers of amorphous transition metal alloys and electron-phonon enhancement, J. Phys. F, 11, L207, 10.1088/0305-4608/11/8/007