Low-temperature structure and thermoelectric properties of ductile Ag2S0.4Te0.6

Scripta Materialia - Tập 228 - Trang 115313 - 2023
Zhili Li1, Jiye Zhang1, Shaoqin Wang1, Zirui Dong, Chen Lin, Jun Luo1,2
1School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
2Materials Genome Institute, Shanghai University, Shanghai 200444, China

Tài liệu tham khảo

Snyder, 2008, Complex thermoelectric materials, Nat. Mater., 7, 105, 10.1038/nmat2090 Zhu, 2017, Compromise and Synergy in high-efficiency thermoelectric materials, Adv. Mater., 29, 10.1002/adma.201605884 Tan, 2016, Rationally designing high-performance bulk thermoelectric materials, Chem. Rev, 116, 12123, 10.1021/acs.chemrev.6b00255 Huang, 2020, Fiber-based energy conversion devices for human-body energy harvesting, Adv. Mater., 32 Rolland, 2013, Paper as a novel material platform for devices, MRS Bull, 38, 299, 10.1557/mrs.2013.58 Xie, 2009, Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys, Appl. Phys. Lett., 94, 10.1063/1.3097026 Pan, 2018, Melt-centrifuged (Bi,Sb)2Te3: engineering microstructure toward high thermoelectric efficiency, Adv. Mater., 30, 1802016, 10.1002/adma.201802016 Wei, 2020, Simultaneously increased carrier concentration and mobility in p-type Bi0.5Sb1.5Te3 throng Cd doping, J. Alloy. Compd., 830, 10.1016/j.jallcom.2020.154625 Jiang, 2022, High figure-of-merit and power generation in high-entropy GeTe-based thermoelectrics, Science, 377, 208, 10.1126/science.abq5815 Dong, 2019, Medium-temperature thermoelectric GeTe: vacancy suppression and band structure engineering leading to high performance, Energy Environ. Sci., 12, 1396, 10.1039/C9EE00317G Hong, 2019, Thermoelectric GeTe with diverse degrees of freedom having secured superhigh performance, Adv. Mater., 31, 10.1002/adma.201807071 Gelbstein, 2008, Mechanical properties of PbTe-based thermoelectric semiconductors, Scripta Mater., 58, 251, 10.1016/j.scriptamat.2007.10.012 You, 2019, Realization of higher thermoelectric performance by dynamic doping of copper in n-type PbTe, Energy Environ. Sci., 12, 3089, 10.1039/C9EE01137D Biswas, 2012, High-performance bulk thermoelectrics with all-scale hierarchical architectures, Nature, 489, 414, 10.1038/nature11439 Liang, 2021, Ductile inorganic amorphous/crystalline composite Ag4TeS with phonon-glass electron-crystal transport behavior and excellent stability of high thermoelectric performance on plastic deformation, Acta Mater., 218, 10.1016/j.actamat.2021.117231 Chen, 2021, Room-temperature plastic inorganic semiconductors for flexible and deformable electronics, InfoMat, 3, 22, 10.1002/inf2.12149 Liang, 2019, Flexible thermoelectrics: from silver chalcogenides to full-inorganic devices, Energy Environ. Sci., 12, 2983, 10.1039/C9EE01777A Shi, 2018, Room-temperature ductile inorganic semiconductor, Nat. Mater., 17, 421, 10.1038/s41563-018-0047-z Liang, 2020, Crystalline structure-dependent mechanical and thermoelectric performance in Ag2Se1-xSx system, Research, 2020, 10.34133/2020/6591981 Wang, 2019, Aguilarite Ag4SSe thermoelectric material: natural mineral with low lattice thermal conductivity, ACS Appl. Mater. Interfaces, 11, 12632, 10.1021/acsami.8b22741 Gao, 2021, P-type plastic inorganic thermoelectric materials, Adv. Energy Mater., 11 He, 2020, Semiconductor glass with superior flexibility and high room temperature thermoelectric performance, Sci. Adv., 6, eaaz8423, 10.1126/sciadv.aaz8423 Yang, 2021, Ductile Ag20S7Te3 with excellent shape-conformability and high thermoelectric performance, Adv. Mater., 33 Li, 2022, Origin of ductility in amorphous Ag2S0.4Te0.6, Appl. Phys. Lett., 120 Jonson, 1980, Mott's formula for the thermopower and the Wiedemann-Franz law, Phys. Rev. B, 21, 4223, 10.1103/PhysRevB.21.4223 Navrátil, 2001, Transport properties of Bi2-xInxSe3 single crystals, J. Solid State Chem., 160, 474, 10.1006/jssc.2001.9323 Wang, 2018, Low temperature thermoelectric properties of p-type doped single-crystalline SnSe, Appl. Phys. Lett., 112 Zhou, 2020, Thermal conductivity of amorphous materials, Adv. Funct. Mater., 30, 10.1002/adfm.202070048 Cahill, 1989, Heat flow and lattice vibrations in glasses, Solid State Commun, 70, 927, 10.1016/0038-1098(89)90630-3 Pompe, 1988, Thermal conductivity of amorphous Si at low temperatures, Phys. Status Solidi B-Basic Solid State Phys., 147, 103, 10.1002/pssb.2221470109 Liu, 2017, The microscopic origin of low thermal conductivity for enhanced thermoelectric performance of Yb doped MgAgSb, Acta Mater., 128, 227, 10.1016/j.actamat.2017.02.015 Callaway, 1959, Model for lattice thermal conductivity at low temperatures, Phys. Rev., 113, 1046, 10.1103/PhysRev.113.1046 Wei, 2016, Minimum thermal conductivity in weak topological insulators with bismuth-based stack structure, Adv. Funct. Mater., 26, 5360, 10.1002/adfm.201600718 Tian, 2009, Low temperature specific heat and thermal conductivity of bulk metallic glass (Cu50Zr50)94Al6, Solid State Commun., 149, 1527, 10.1016/j.ssc.2009.06.004 Wagner, 1963, Influence of localized modes on thermal conductivity, Phys. Rev., 131, 1443, 10.1103/PhysRev.131.1443 Zhou, 2006, On the existence of Einstein oscillators and thermal conductivity in bulk metallic glass, Appl. Phys. Lett., 89, 10.1063/1.2234281 Holzwarth, 2011, The Scherrer equation versus the 'Debye-Scherrer equation, Nat. Nanotechnol., 6, 10.1038/nnano.2011.145 Nakamura, 2015, Anomalous reduction of thermal conductivity in coherent nanocrystal architecture for silicon thermoelectric material, Nano Energy, 12, 845, 10.1016/j.nanoen.2014.11.029 Emin, 2019, Polaron transport of amorphous semiconductors with embedded crystallites, Philos. Mag., 99, 1225, 10.1080/14786435.2019.1579375 Delgado, 1986, Electron transport in La100-xAlx metallic glasses, Phys. Rev. B, 34, 8288, 10.1103/PhysRevB.34.8288 Rathnayaka, 1986, Electronic-transport properties of amorphous Cu-Ti films, Phys. Rev. B, 33, 889, 10.1103/PhysRevB.33.889 Howson, 1988, The electron transport properties of metallic glasses, Phys. Rep., 170, 265, 10.1016/0370-1573(88)90145-7 Gallagher, 1984, The temperature dependence of the hall coefficient of metallic glasses: further evidence for electron-electron interaction effects, J. Phys. F, 14, L225, 10.1088/0305-4608/14/11/002 Gallagher, 1981, Thermoelectric powers of amorphous transition metal alloys and electron-phonon enhancement, J. Phys. F, 11, L207, 10.1088/0305-4608/11/8/007