Low temperature property of Ni3(PO4)2.8H2O; NaOH
Tóm tắt
An inorganically template metaphosphoric acid-containing nickel salt, nanomaterial, has been synthesized and characterized with different measurement techniques such as differential scanning calorimeter (DSC), ultraviolet–visible and near infrared (UV–Vis–NIR) absorption spectroscopy, transmission electron microscopy (HRTEM), vibrating sample magnetometer and X-ray powder diffraction. The thermal property of this mixture has been studied at a low temperature up to 223 from 303 K with DSC. The specific heat capacity of this mixture has been measured in atmospheric O2 at a rate of 10 K min−1 from 303 to 223 K and vice versa in two thermal cycles. The net specific heat capacity of this mixture is found to be 1747.86 J kg−1 K−1 and −6401.38 J kg−1 K−1 in first and second thermal cycles, respectively. There is a discontinuity in the specific heat at 98 s for 233 K and 9 s for 238 K. This average crystallite size of this nanomaterial is ~23.5 nm. The paramagnetic Curie temperature (θ
P) and Curie constant (C) are 34.77 K and 9.11 × 10−3, respectively. This material found was an insulator from UV–Vis–NIR measurements.
Tài liệu tham khảo
Serre C, Ferey G. Hydrothermal synthesis and structure determination from powder data of new three-dimensional titanium(IV) diphosphonates Ti(O3P—(CH2)n− PO3) or MIL-25n (n = 2, 3). Inorg Chem. 2001;40:5350–3.
Zhang YN, Zhou BB, Li YG, Su ZH, Zhao ZF. A new molybdenum(V) nickel phosphate based on divacant [H30(Mo(V)16O32)Ni14(PO4)26O2(OH)4(H2O)8]12- wheel. Dalton Trans. 2009;43:9446–51.
Wu H, Gao Y, Li H. Controlled synthesis of nickel phosphate hexahedronal and flower- like architectures via a simple template-free hydrothermal route. Cryst Eng Commun. 2010;12:3607–11.
Lin SC, Chen SY, Cheng S-Y, Lin JC. Synthesis and magnetic properties of highly arrayed nickel-phosphate nanotubes. Solid State Sci. 2005;7(7):896–900.
Samadi-Maybodi A, Nejad-Darzi SKH, Akhoondi R. Synthesis and characterization of nickel phosphate nanoparticles and VSB-5 with quaternary ammonium base. Int Nano Lett. 2011;1(1):52–8.
Jian D, Gao Q, Gao D, Ruan M, Shi W. Preparation of CdS semiconductor nanoarrays in the channels of nickel phosphate VSB-5 nanorods. Phys Lett A. 2006;357(2):136–40.
Guillou N, Gao Q, Forster PM, Chang JS, Park SE, Ferey G, Cheetham AK. Nickel(II) phosphate VSB-5: a magnetic nanoporous hydrogenation catalyst with 24-ring tunnels. Angew Chem Int Ed. 2001;40:2831–4.
Swain T. Synthesis, structural and thermal characterization of metaphosphatenickel(II) salt. J Therm Anal Calorim. 2012;110:929–35. doi:10.1007/s10973-011-1865-2.
Willianson GK, Hall WH. X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1953;1:22–31. doi:10.1016/0001-6160(53)90006-6.
Monshi A, Foroughi MR, Monshi MR. Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World J Nano Sci Eng. 2012;2(3):154–60. doi:10.4236/wjnse.2012.23020.
Swain T. Synthesis, structural and thermal characterization of metaphosphatecobalt(II) Salt. J Therm Anal Calorim. 2011;103(3):1111–7. doi:10.1007/s10973-010-1142-9.
Swain T. Synthesis and thermal characterization of sulfur containing methionine bridged cobalt(III) and copper(II) complex. J Therm Anal Calorim. 2012;109:365–72. doi:10.1007/s10973-011-1751-y.
Hanggi P, Ingold G-L. Quantum Brownian motion and the third law of thermodynamics. Acta Phys Pol, B. 2006;37:1537–50.
Hanggi P, Ingold G-L, Talkner P. Finite quantum dissipation: the challenge of obtaining specific heat. New J Phys. 2008;. doi:10.1088/1367-2630/10/11/115008.
Leggett AJ, Chakravarty S, Dorsey AT, Fisher MPA, Garg A, Zwerger W. Dynamics of the dissipative two-state system. Rev Mod Phys. 1987;59:1–85.
Ingold G-L. Path integrals and their application to dissipative quantum systems. Lect Notes Phys. 2002;611:1–53.
Eid KF, Stone MB, Ku KC, Maksimov O, Schiffer P, Samarth N, Shih TC, Palmstrom CJ. Exchange biasing of the ferromagnetic semiconductor Ga1−xMnxAs. Appl Phys Lett. 2004;85:1556–8.
Thupakula U, Jena A, Khan AH, Dalui A, Acharya S. Synthesis, structure and electronic properties of ultranarrow CdS nanorods. J Nanopart Res. 2012;14:701–11. doi:10.1007/s11051-011-0701-8.