Low-temperature processed bipolar metal oxide charge transporting layers for highly efficient perovskite solar cells
Tài liệu tham khảo
Zheng, 2017, Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations, Nat. Energy, 2, 17102, 10.1038/nenergy.2017.102
Jung, 2019, Efficient, stable and scalable perovskite solar cells using poly (3-hexylthiophene), Nature, 567, 511, 10.1038/s41586-019-1036-3
Stranks, 2013, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber, Science, 342, 341, 10.1126/science.1243982
Xing, 2013, Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3, Science, 342, 344, 10.1126/science.1243167
Kojima, 2009, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc., 131, 6050, 10.1021/ja809598r
https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies-190416.pdf.
Jiang, 2019, Surface passivation of perovskite film for efficient solar cells, Nat, Photonics, 1
Singh, 2018, A novel ball milling technique for room temperature processing of TiO2 nanoparticles employed as the electron transport layer in perovskite solar cells and modules,, J. Mater. Chem., 6, 7114, 10.1039/C8TA00303C
Saliba, 2016, Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency, Energy Environ. Sci., 9, 1989, 10.1039/C5EE03874J
Hu, 2018, PEDOT: PSS monolayers to enhance the hole extraction and stability of perovskite solar cells, J. Mater. Chem., 6, 16583, 10.1039/C8TA05234D
Jeng, 2013, CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells, Adv. Mater., 25, 3727, 10.1002/adma.201301327
Wang, 2015, Doped hole transport layer for efficiency enhancement in planar heterojunction organolead trihalide perovskite solar cells, Nano Energy, 15, 275, 10.1016/j.nanoen.2015.04.029
Conings, 2014, Perovskite-based hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach, Adv. Mater., 26, 2041, 10.1002/adma.201304803
Yang, 2016, Recent progress in electron transport layers for efficient perovskite solar cells, J. Mater. Chem., 4, 3970, 10.1039/C5TA09011C
You, 2014, Moisture assisted perovskite film growth for high performance solar cells, Appl. Phys. Lett., 105, 183902, 10.1063/1.4901510
Singh, 2019, Facile synthesis of composite tin oxide nanostructures for high-performance planar perovskite solar cells, Nano Energy, 60, 275, 10.1016/j.nanoen.2019.03.044
Kwon, 2016, Solution-processible crystalline NiO nanoparticles for high-performance planar perovskite photovoltaic cells, Sci. Rep., 6, 30759, 10.1038/srep30759
Azmi, 2018, High-efficiency low-temperature ZnO based perovskite solar cells based on highly polar, nonwetting self-assembled molecular layers, Adv. Energy Mater., 8, 1701683, 10.1002/aenm.201701683
Zuo, 2015, Solution-processed Cu2O and CuO as hole transport materials for efficient perovskite solar cells, Small, 11, 5528, 10.1002/smll.201501330
Ye, 2015, CuSCN-based inverted planar perovskite solar cell with an average PCE of 15.6%, Nano Lett., 15, 3723, 10.1021/acs.nanolett.5b00116
Khadka, 2020, Ammoniated aqueous precursor ink processed copper iodide as hole transport layer for inverted planar perovskite solar cells, Solar Energy Mater, Sol. Cell., 210, 110486
Sun, 2016, Room-temperature and solution-processed copper iodide as the hole transport layer for inverted planar perovskite solar cells, Nanoscale, 8, 15954, 10.1039/C6NR04288K
Hwang, 2016, Novel CdS hole-blocking layer for photostable perovskite solar cells, ACS Appl. Mater. Interfaces, 8, 4226, 10.1021/acsami.5b12336
Ge, 2017, Cu-based quaternary chalcogenide Cu2BaSnS4 thin films acting as hole transport layers in inverted perovskite CH3NH3PbI3 solar cells, J. Mater. Chem., 5, 2920, 10.1039/C6TA08426E
Noh, 2013, Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells, Nano Lett., 13, 1764, 10.1021/nl400349b
Luo, 2017, Efficient and air-stable planar perovskite solar cells formed on graphene-oxide-modified PEDOT: PSS hole transport layer, Nano-Micro Lett., 9, 39, 10.1007/s40820-017-0140-x
Zhou, 2017, Stable inverted planar perovskite solar cells with low-temperature-processed hole-transport bilayer, Adv. Energy Mater., 7, 1700763, 10.1002/aenm.201700763
Jørgensen, 2008, Stability/degradation of polymer solar cells, Solar Energy Mater, Sol. Cell., 92, 686
You, 2016, Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers, Nat. Nanotechnol., 11, 75, 10.1038/nnano.2015.230
Li, 2014, Over 1.1 ev workfunction tuning of cesium intercalated metal oxides for functioning as both electron and hole transport layers in organic optoelectronic devices, Adv. Funct. Mater., 24, 7348, 10.1002/adfm.201401969
Li, 2015, MoOx and V2Ox as hole and electron transport layers through functionalized intercalation in normal and inverted organic optoelectronic devices, Light: Sci. Appl., 4
Irwin, 2008, p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells, Proc. Natl. Acad. Sci. Unit. States Am., 105, 2783, 10.1073/pnas.0711990105
Lou, 2002, Hydrothermal synthesis of α-MoO3 nanorods via acidification of ammonium heptamolybdate tetrahydrate, Chem. Mater., 14, 4781, 10.1021/cm0206237
Park, 2009, Doping of the metal oxide nanostructure and its influence in organic electronics, Adv. Funct. Mater., 19, 1241, 10.1002/adfm.200801639
Bolink, 2010, Phosphorescent hybrid organic–inorganic light-emitting diodes, Adv. Mater., 22, 2198, 10.1002/adma.200904018
Kim, 2013, A.R. bin Mohd Yusoff, J.-H. Youn, J. Jang, Inverted quantum-dot light emitting diodes with cesium carbonate doped aluminium-zinc-oxide as the cathode buffer layer for high brightness, J. Mater. Chem. C, 1, 3924, 10.1039/c3tc30505h
Chen, 2017, Cesium doped NiOx as an efficient hole extraction layer for inverted planar perovskite solar cells, Adv. Energy Mater., 7, 1700722, 10.1002/aenm.201700722
Yao, 2018, Cesium-doped vanadium oxide as the hole extraction layer for efficient perovskite solar cells, ACS Omega, 3, 1117, 10.1021/acsomega.7b01944
Dong, 2014, Cesium carbonate as a surface modification material for organic–inorganic hybrid perovskite solar cells with enhanced performance, RSC Adv., 4, 60131, 10.1039/C4RA08565E
Liu, 2012, High-efficiency inverted polymer solar cells with transparent and work-function tunable MoO3-Al composite film as cathode buffer layer, Adv. Mater., 24, 2774, 10.1002/adma.201200238
Murdoch, 2009, Aluminum doped zinc oxide for organic photovoltaics, Appl. Phys. Lett., 94, 138, 10.1063/1.3142423
Fernández, 1997, Structural characterization of NiO doped with several caesium loadings, J. Mol. Catal. Chem., 119, 77, 10.1016/S1381-1169(96)00471-2
Yue, 2017, Efficacious engineering on charge extraction for realizing highly efficient perovskite solar cells, Energy Environ. Sci., 10, 2570, 10.1039/C7EE02685D
Jung, 2015, A low-temperature, solution-processable, Cu-doped nickel oxide hole-transporting layer via the combustion method for high-performance thin-film perovskite solar cells, Adv, Mater., 27, 7874
Sajid, 2018, Breakthroughs in NiOx-HTMs towards stable, low-cost and efficient perovskite solar cells, Nano Energy, 51, 408, 10.1016/j.nanoen.2018.06.082
Jeng, 2014, Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells, Adv. Mater., 26, 4107, 10.1002/adma.201306217
Chih, 2016, NiOx Electrode Interlayer and CH3NH2/CH3NH3PbBr3 Interface treatment to markedly advance hybrid perovskite-based light-emitting diodes, Adv. Mater., 28, 8687, 10.1002/adma.201602974
Garcia, 2012, Improvement of interfacial contacts for new small-molecule bulk-heterojunction organic photovoltaics, Adv. Mater., 24, 5368, 10.1002/adma.201200963
Bi, 2016, Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%, Nat. Energy, 1, 16142, 10.1038/nenergy.2016.142
Qin, 2019, Manipulating the mixed-perovskite crystallization pathway unveiled by in situ GIWAXS, Adv. Mater., 31, 1901284, 10.1002/adma.201901284
Khadka, 2019, Unraveling the impacts induced by organic and inorganic hole transport layers in inverted halide perovskite solar cells, ACS Appl. Mater. Interfaces, 11, 7055, 10.1021/acsami.8b20924
Mali, 2019, Highly efficient thermally stable perovskite solar cells via Cs:NiOx/CuSCN double-inorganic hole extraction layer interface engineering, Mater. Today, 26, 8, 10.1016/j.mattod.2019.01.017
Rakshit, 2013, Controlled synthesis of spin glass nickel oxide nanoparticles and evaluation of their potential antimicrobial activity: a cost effective and eco friendly approach, RSC Adv., 3, 19348, 10.1039/c3ra42628a
Jeong, 2019, Enhancing thermal oxidation stability of silver nanowire transparent electrodes by using a cesium carbonate-incorporated overcoating layer, Materials, 12, 1140, 10.3390/ma12071140
Huang, 2010, Using a low temperature crystallization process to prepare anatase TiO2 buffer layers for air-stable inverted polymer solar cells, Energy Environ. Sci., 3, 654, 10.1039/b922373h
Nho, 2016, Highly efficient inverted bulk-heterojunction solar cells with a gradiently-doped ZnO layer, Energy Environ. Sci., 9, 240, 10.1039/C5EE03045E
Kim, 2014, Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells, Nanoscale, 6, 6679, 10.1039/c4nr00130c
Cui, 2019, Planar p–n homojunction perovskite solar cells with efficiency exceeding 21.3%, Nat. Energy, 4, 150, 10.1038/s41560-018-0324-8
Wang, 2014, P-type mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells, Sci. Rep., 4, 4756, 10.1038/srep04756
Shen, 2017, A.B. Djurišić, J.A. Zapien, C. Surya, Characterization of low-frequency excess noise in CH3NH3PbI3-based solar cells grown by solution and hybrid chemical vapor deposition techniques, ACS Appl. Mater. Interfaces, 10, 371, 10.1021/acsami.7b10091
Jao, 2018, Low temperature and rapid formation of high quality metal oxide thin film via a hydroxide-assisted energy conservation strategy, J. Mater. Chem. C, 6, 9941, 10.1039/C8TC03544J
Banerjee, 2012, Synthesis and characterization of nickel oxide doped barium strontium titanate ceramics, Cerâmica, 58, 99, 10.1590/S0366-69132012000100016