Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts

Nature - Tập 544 Số 7648 - Trang 80-83 - 2017
Lili Lin1, Wu Zhou2, Rui Gao3, Siyu Yao1, Xiao Zhang4, Wenqian Xu5, Shijian Zheng6, Zheng Jiang7, Qiaolin Yu1, Yongwang Li8, Chuan Shi4, Xiaodong Wen8, Ding Ma1
1College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
2School of Physical Sciences, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, China
3State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, PO Box 165, Taiyuan, 030001, Shanxi, China
4Key Laboratory of Industrial Ecology and Environmental Engineering, MOE, Dalian University of Technology, Dalian 116024, China
5X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
6Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
7Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
8Synfuels China Co. Ltd, Beijing, 100195, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Steele, B. C. & Heinzel, A. Materials for fuel-cell technologies. Nature 414, 345–352 (2001)

Schlapbach, L. & Zuttel, A. Hydrogen-storage materials for mobile applications. Nature 414, 353–358 (2001)

Amphlett, J. C. et al. Hydrogen-production by steam reforming of methanol for polymer electrolyte fuel-cells. Int. J. Hydrogen Energy 19, 131–137 (1994)

David, W. I. et al. Hydrogen production from ammonia using sodium amide. J. Am. Chem. Soc. 136, 13082–13085 (2014)

Yu, K. M. K. et al. Non-syngas direct steam reforming of methanol to hydrogen and carbon dioxide at low temperature. Nat. Commun. 3, 1230 (2012)

Lee, J. K., Ko, J. B. & Kim, D. H. Methanol steam reforming over Cu/ZnO/Al2O3 catalyst: kinetics and effectiveness factor. Appl. Catal. A Gen. 278, 25–35 (2004)

Sá, S., Silva, H., Brandão, L., Sousa, J. M. & Mendes, A. Catalysts for methanol steam reforming—a review. Appl. Catal. B 99, 43–57 (2010)

Setthapun, W., Bej, S. K. & Thompson, L. T. Carbide and nitride supported methanol steam reforming catalysts: parallel synthesis and high throughput screening. Top. Catal. 49, 73–80 (2008)

Davda, R. R., Shabaker, J. W., Huber, G. W., Cortright, R. D. & Dumesic, J. A. A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts. Appl. Catal. B 56, 171–186 (2005)

Song, C. Fuel processing for low-temperature and high-temperature fuel cells: challenges and opportunities for sustainable development in the 21st century. Catal. Today 77, 17–49 (2002)

Deng, Z.-Y., Ferreira, J. M. F. & Sakka, Y. Hydrogen-generation materials for portable applications. J. Am. Ceram. Soc. 91, 3825–3834 (2008)

Cortright, R. D., Davda, R. R. & Dumesic, J. A. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 418, 964–967 (2002)

Shabaker, J. W., Davda, R. R., Huber, G. W., Cortright, R. D. & Dumesic, J. A. Aqueous-phase reforming of methanol and ethylene glycol over alumina-supported platinum catalysts. J. Catal. 215, 344–352 (2003)

Nielsen, M. et al. Low-temperature aqueous-phase methanol dehydrogenation to hydrogen and carbon dioxide. Nature 495, 85–89 (2013)

Gunanathan, C. & Milstein, D. Bond activation and catalysis by ruthenium pincer complexes. Chem. Rev. 114, 12024–12087 (2014)

Denard, C. A. et al. Cooperative tandem catalysis by an organometallic complex and a metalloenzyme. Angew. Chem. Int. Ed. 126, 475–479 (2014)

Qiao, B. T. et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3, 634–641 (2011)

Zhai, Y. et al. Alkali-stabilized Pt-OHx species catalyze low-temperature water-gas shift reactions. Science 329, 1633–1636 (2010)

Zhao, D. & Xu, B. Q. Enhancement of Pt utilization in electrocatalysts using gold nanoparticles. Angew. Chem. Int. Ed. 45, 4955–4959 (2006)

Fu, Q., Saltsburg, H. & Flytzani-Stephanopoulos, M. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 301, 935–938 (2003)

Yang, M. et al. Catalytically active Au-O(OH)x-species stabilized by alkali ions on zeolites and mesoporous oxides. Science 346, 1498–1501 (2014)

Li, J. et al. Direct conversion of cellulose using carbon monoxide and water on a Pt–Mo2C/C catalyst. Energy Environ. Sci. 7, 393–398 (2014)

Lebarbier, V. M. et al. Sorption-enhanced synthetic natural gas (SNG) production from syngas: a novel process combining CO methanation, water-gas shift, and CO2 capture. Appl. Catal. B 144, 223–232 (2014)

Fu, Q. et al. Interface-confined ferrous centers for catalytic oxidation. Science 328, 1141–1144 (2010)

US Department of Energy. Compare Fuel Cell Vehicles http://www.fueleconomy.gov/feg/fcv_sbs.shtml (accessed 19 January 2017)

Schweitzer, N. M. et al. High activity carbide supported catalysts for water gas shift. J. Am. Chem. Soc. 133, 2378–2381 (2011)

Wei, H. et al. FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nat. Commun. 5, 5634 (2014)

Moulder, J. F ., Chastain, J & King, R. C. Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra For Identification and Interpretation of XPS Data (Perkin–Elmer, 1992)

Lee, J. S., Volpe, L., Ribeiro, F. H. & Boudart, M. Molybdenum carbide catalysts: II. Topotactic synthesis of unsupported powders. J. Catal. 112, 44–53 (1988)

Ma, Y. et al. Low-temperature steam reforming of methanol to produce hydrogen over various metal-doped molybdenum carbide catalysts. Int. J. Hydrogen Energy 39, 258–266 (2014)

Toby, B. H. EXPGUI, a graphical user interface for GSAS. J. Appl. Cryst. 34, 210–213 (2001)

Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005)

Krivanek, O. L. et al. in Low Voltage Electron Microscopy: Principles and Applications (eds Bell, D. & Erdman N. ) 119–161 (Wiley–Blackwell, 2013)

Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996)

Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996)

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994)

Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999)

Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000)