Low-temperature heat capacities and thermodynamic functions of four-ring chain difluoromethyleneoxy liquid crystalline compounds with different alkyl terminal chain

Journal of Thermal Analysis and Calorimetry - Tập 125 Số 1 - Trang 537-545 - 2016
Xuelin Wang1, Zhi‐Cheng Tan2, Quan Shi2, Guanglong Zou1
1School of Graduate Students, Guizhou Minzu University, Ten-li Strand Campus, Guiyang, 550025, People’s Republic of China
2Thermochemistry Laboratory, Liaoning Province Key Laboratory of Thermochemistry for Energy and Materials, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bremer M, Kirsch P, Klasen-Memmer M, Tarumi K. The TV in your pocket: development of liquid-crystal materials for the new millennium. Angew Chem Int Ed. 2013;52(34):8880–96. doi: 10.1002/anie.201300903 .

Geelhaar T, Griesar K, Reckmann B. 125 years of liquid crystals—A scientific revolution in the home. Angew Chem Int Ed. 2013;52(01):2–14. doi: 10.1002/anie.201301457 .

Guittard F, Givenchy ET, Geribaldi S, Cambon A. Highly fluorinated thermotropic liquid crystals: an update. J Fluorine Chem. 1999;100(1–2):85–96. doi: 10.1016/S0022-1139(99)00205-5 .

Hird M. Fluorinated liquid crystals—properties and applications. Chem Soc Rev. 2007;36(12):2070–95. doi: 10.1039/b610738a .

Kirsch P, Bremer M. Nematic liquid crystals for active matrix display molecular design and synthesis. Angew Chem Int Ed. 2000;39(23):4216–35. doi: 10.1002/1521-3773(20001201)39:23<4216:AID-ANIE4216>3.0.CO;2-K .

Gopal ESR. Specific heats at low temperatures. New York: Plenum Press; 1966. p. 30.

Morimoto N, Saito K, Morita Y, Nakasuji K, Sorai M. Thermodynamic investigation of the thermotropic cubic mesogen 1,2-bis (4-n-octyloxybenzoyl) hydrazine. Liquid Cryst. 1999;26(02):219–28. doi: 10.1080/026782999205353 .

Drebushchak VA. Discrepancy in the low-temperature heat capacity of MgFe2O4 and related problems. J Therm Anal Calorim. 2014;117(01):443–6. doi: 10.1007/s10973-014-3678-6 .

Hiraoka T, Fujita A, Kubo Y, Matsui S, Miyazawa K. Novel liquid crystalline four ring chain difluoromethyleneoxy compounds for quicker response LC mixtures. Mol Cryst Liquid Cryst. 2009;509(01):89–95. doi: 10.1080/15421400903065200 .

Nenajdenko VG, Goldberg AA, Muzalevskiy VM, Balenkova ES, Shastin AV. Design and synthesis of a new family of fluorinated liquid crystals. Chem Eur J. 2013;19(07):2370–83. doi: 10.1002/chem.201203315 .

Sorai M, Satito K. Alkyl chains acting as entropy reservoir in liquid crystalline materials. Chem Record. 2003;3(01):29–39. doi: 10.1002/tcr.10046 .

Messerly JF, Guthrie GB, Todd S, Finke HL. Low-temperature thermal data for n-pentane, n-heptadecane, and n-octadecane. J Chem Eng Data. 1967;12(03):338–46. doi: 10.1021/je60034a014 .

Miltenburg JC, Oonk HAJ, Metivaud V. Heat capacities and derived thermodynamic functions of n-nonadecane and n-eicosane between 10 K and 390 K. J Chem Eng Data. 1999;44(04):715–20. doi: 10.1021/je980231 .

Shi Q, Boerio-Goates J, Woodfield BF. An improved technique for accurate heat capacity measurements on powdered samples using a commercial relaxation calorimeter. J Chem Thermodyn. 2011;43(08):1263–9. doi: 10.1016/j.jct.2011.03.018 .

Shi Q, Claine LS, Juliana BG, Woodfield BF. Accurate heat capacity measurements on powdered samples using a Quantum Design physical property measurement system. J Chem Thermodyn. 2010;42(09):1107–15. doi: 10.1016/j.jct.2010.04.008 .

Dai RX, Zhang SH, Yin N, Tan ZC, Shi Q. Low-temperature heat capacity and standard thermodynamic functions of β-d-(−)-arabinose (C5H10O5). J Chem Thermodyn. 2016;92:60–5. doi: 10.1016/j.jct.2015.08.031 .

Lashley JC, Hundley MF, Migliori A, Sarrao JL, Pagliuso PG, Darling TW, Jaime M, Cooley JC, Hults WL, Morales L, Thoma DJ, Smith JL, Boerio-Goates J, Woodfield BF, Stewart GR, Fisher RA, Phillips NE. Critical examination of heat capacity measurements made on a Quantum Design physical property measurement system. Cryogenics. 2003;43(06):369–78. doi: 10.1016/S0011-2275(03)00092-4 .

Ribeiro da Silva MAV, Ribeiro da Silva MMC, Lobo Ferreira AIMC, Shi Q, Woodfield BF, Goldberg RNG. Thermochemistry of α-d-xylose(cr). J Chem Thermodyn. 2013;58:20–8. doi: 10.1016/j.jct.2012.09.028 .

Woodfield BF, Shapiro JL, Stevens R, Boerio-Goates J, Putnam RL, Helean KB, Navrotsky A. Molar heat capacity and thermodynamic functions for CaTiO3. J Chem Thermodyn. 1999;31(12):1573–83. doi: 10.1006/jcht.1999.0556 .

Jiang Y, An ZW, Chen P, Chen XB, Zheng MY. Synthesis and mesomorphic properties of but-3-enyl-based fluorinated biphenyl liquid crystals. Liquid Cryst. 2012;39(04):457–65. doi: 10.1080/02678292.2011.653410 .

Saito K, Ikeuchi S, Nakazawa Y, Sato A, Mitsumi M, Yamashita T, Toriumi K, Sorai M. Alkyl group as entropy reservoir in an MMX chain complex, Pt2(n-PenCS2)4I. J Phys Chem B. 2005;109(07):2956–61. doi: 10.1021/jp046187o .

Saito K, Ikeda M, Sorai M. Thermodynamic implication of the dependence of mesomorphic transition entropy on chain-length. J Therm Anal Calorim. 2002;70(02):345–52. doi: 10.1023/A:1021699702018 .

Ramos SLLM, Ogino M, Oguni M. Phase- and glass-transition phenomena due to the same configurational order–disorder mechanism in crystalline racemic sec-butylcyclohexane. J Therm Anal Calorim. 2014;115(02):1353–8. doi: 10.1007/s10973-013-3436-1 .