Low serum creatinine is associated with type 2 diabetes in morbidly obese women and men: a cross-sectional study

BMC Endocrine Disorders - Tập 10 - Trang 1-6 - 2010
Jøran Hjelmesæth1, Jo Røislien1,2, Njord Nordstrand1, Dag Hofsø1, Helle Hager3, Anders Hartmann4
1The Morbid Obesity Centre, Vestfold Hospital Trust, Tønsberg, Norway
2Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
3Department of Clinical Chemistry, Vestfold Hospital Trust, Tønsberg, Norway
4Department of Medicine, Rikshospitalet University Hospital, University of Oslo, Oslo, Norway

Tóm tắt

Low skeletal muscle mass is associated with insulin resistance and metabolic syndrome. Serum creatinine may serve as a surrogate marker of muscle mass, and a possible relationship between low serum creatinine and type 2 diabetes has recently been demonstrated. We aimed to validate this finding in a population of Caucasian morbidly obese subjects. Cross-sectional study of 1,017 consecutive morbidly obese patients with an estimated glomerular filtration rate >60 ml/min/1.73 m2. Logistic regression (univariate and multiple) was used to assess the association between serum creatinine and prevalent type 2 diabetes, including statistically testing for the possibility of non-linearity in the relationship by implementation of Generalized Additive Models (GAM) and piecewise linear regression. Possible confounding variables such as age, family history of diabetes, waist-to-hip ratio, hypertension, current smoking, serum magnesium, albuminuria and insulin resistance (log HOMA-IR) were adjusted for in three separate multiple logistic regression models. The unadjusted GAM analysis suggested a piecewise linear relationship between serum creatinine and diabetes. Each 1 μmol/l increase in serum creatinine was associated with 6% (95% CI; 3%-8%) and 7% (95% CI; 2%-13%) lower odds of diabetes below serum creatinine levels of 69 and 72 μmol/l in women and men, respectively. Above these breakpoints the serum creatinine concentrations did not reduce the odds further. Adjustments for non-modifiable and modifiable risk factors left the piecewise effect for both women and men largely unchanged. In the fully adjusted model, which includes serum magnesium, albuminuria and log HOMA-IR, the piecewise effect for men was statistically non-significant, but it remained present for women. Patients with creatinine levels below median had approximately 50% (women) and 75% (men) increased odds of diabetes. Low serum creatinine is a predictor of type 2 diabetes in Caucasian morbidly obese patients, independent of age, gender, family history of diabetes, anthropometric measures, hypertension, and current smoking. Longitudinal studies of both obese and non-obese populations are needed to investigate whether serum creatinine may be causally linked with type 2 diabetes, and if so, precisely how they are linked.

Tài liệu tham khảo

Haffner SM, Stern MP, Dunn J, Mobley M, Blackwell J, Bergman RN: Diminished insulin sensitivity and increased insulin response in nonobese, nondiabetic Mexican Americans. Metabolism: Clinical and Experimental. 1990, 39: 842-847. Hofso D, Jenssen T, Bollerslev J, Roislien J, Hager H, Hjelmesaeth J: Anthropometric characteristics and type 2 diabetes in extremely obese Caucasian subjects: a cross-sectional study. Diabetes Research and Clinical Practice. 2009, 86: e9-11. 10.1016/j.diabres.2009.06.016. Ferrannini E, Smith JD, Cobelli C, Toffolo G, Pilo A, DeFronzo RA: Effect of insulin on the distribution and disposition of glucose in man. Journal of Clinical Investigation. 1985, 76: 357-364. 10.1172/JCI111969. Volpi E, Nazemi R, Fujita S: Muscle tissue changes with aging. Current Opinion in Clinical Nutrition & Metabolic Care. 2004, 7: 405-410. Atlantis E, Martin SA, Haren MT, Taylor AW, Wittert GA, Members of the Florey Adelaide Male Ageing Study: Inverse associations between muscle mass, strength, and the metabolic syndrome. Metabolism: Clinical and Experimental. 2009, 58: 1013-1022. Kuk JL, Kilpatrick K, Davidson LE, Hudson R, Ross R: Whole-body skeletal muscle mass is not related to glucose tolerance or insulin sensitivity in overweight and obese men and women. Applied Physiology, Nutrition, and Metabolism = Physiologie Appliquee, Nutrition et Metabolisme. 2008, 33: 769-774. 10.1139/H08-060. Schutte JE, Longhurst JC, Gaffney FA, Bastian BC, Blomqvist CG: Total plasma creatinine: an accurate measure of total striated muscle mass. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology. 1981, 51: 762-766. Proctor DN, O'Brien PC, Atkinson EJ, Nair KS: Comparison of techniques to estimate total body skeletal muscle mass in people of different age groups. American Journal of Physiology. 1999, 277: t-95- Yonemura K, Takahira R, Yonekawa O, Wada N, Hishida A: The diagnostic value of serum concentrations of 2-(alpha-mannopyranosyl)-L-tryptophan for normal renal function. Kidney International. 2004, 65: 1395-1399. 10.1111/j.1523-1755.2004.00521.x. Harita N, Hayashi T, Sato KK, Nakamura Y, Yoneda T, Endo G: Lower serum creatinine is a new risk factor of type 2 diabetes: the Kansai healthcare study. Diabetes Care. 2009, 32: 424-426. 10.2337/dc08-1265. Tomaszewski M, Charchar FJ, Maric C, McClure J, Crawford L, Grzeszczak W: Glomerular hyperfiltration: a new marker of metabolic risk. Kidney International. 2007, 71: 816-821. 10.1038/sj.ki.5002160. Lorenzo C, Nath SD, Hanley AJ, Abboud HE, Gelfond JA, Haffner SM: Risk of type 2 diabetes among individuals with high and low glomerular filtration rates. Diabetologia. 2009, 52: 1290-1297. 10.1007/s00125-009-1361-4. Chagnac A, Weinstein T, Korzets A, Ramadan E, Hirsch J, Gafter U: Glomerular hemodynamics in severe obesity. American Journal of Physiology - Renal Physiology. 2000, 278: F817-F822. Griffin KA, Kramer H, Bidani AK: Adverse renal consequences of obesity. American Journal of Physiology - Renal Physiology. 2008, 294: F685-F696. 10.1152/ajprenal.00324.2007. Hjelmesaeth J, Hofso D, Aasheim ET, Jenssen T, Moan J, Hager H: Parathyroid hormone, but not vitamin D, is associated with the metabolic syndrome in morbidly obese women and men: a cross-sectional study. Cardiovascular Diabetology. 2009, diabetol..: 8 Levey AS, Coresh J, Greene T, Marsh J, Stevens LA, Kusek JW: Expressing the Modification of Diet in Renal Disease Study equation for estimating glomerular filtration rate with standardized serum creatinine values. Clinical Chemistry. 2007, 53: 766-772. 10.1373/clinchem.2006.077180. World Medical Association declaration of Helsinki: Recommendations guiding physicians in biomedical research involving human subjects. JAMA. 1997, 277: 925-926. 10.1001/jama.277.11.925. American Diabetes Association: Diagnosis and classification of diabetes mellitus. Diabetes Care. 2008, 31 (Suppl-60): Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC: Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985, 28: 412-419. 10.1007/BF00280883. Muniyappa R, Lee S, Chen H, Quon MJ: Current approaches for assessing insulin sensitivity and resistance in vivo: advantages, limitations, and appropriate usage. American Journal of Physiology - Endocrinology and Metabolism. 2008, 294: E15-E26. 10.1152/ajpendo.00645.2007. Janmahasatian S, Duffull SB, Ash S, Ward LC, Byrne NM, Green B: Quantification of lean bodyweight. Clinical Pharmacokinetics. 2005, 44: 1051-1065. 10.2165/00003088-200544100-00004. Demirovic JA, Pai AB, Pai MP: Estimation of creatinine clearance in morbidly obese patients. American Journal of Health-System Pharmacy. 2009, 66: 642-648. 10.2146/ajhp080200. de Jong PE, Curhan GC: Screening, monitoring, and treatment of albuminuria: Public health perspectives. Journal of the American Society of Nephrology. 2006, 17: 2120-2126. 10.1681/ASN.2006010097. Kurtze N, Rangul V, Hustvedt BE, Flanders WD: Reliability and validity of self-reported physical activity in the Nord-Trondelag Health Study (HUNT 2). European Journal of Epidemiology. 2007, 22: 379-387. 10.1007/s10654-007-9110-9. Wood SN: Generalized Additive Models: An Introduction with R. 2006, Boca Raton, FL: Chapman & Hall/CRC Muggeo VM: Estimating regression models with unknown break-points. Statistics in Medicine. 2003, 22: 3055-3071. 10.1002/sim.1545. Kao WH, Folsom AR, Nieto FJ, Mo JP, Watson RL, Brancati FL: Serum and dietary magnesium and the risk for type 2 diabetes mellitus: the Atherosclerosis Risk in Communities Study. Archives of Internal Medicine. 1999, 159: 2151-2159. 10.1001/archinte.159.18.2151. Mykkanen L, Haffner SM, Kuusisto J, Pyorala K, Laakso M: Microalbuminuria precedes the development of NIDDM. Diabetes. 1994, 43: 552-557. 10.2337/diabetes.43.4.552. Wang Z, Hoy WE: Albuminuria as a marker of the risk of developing type 2 diabetes in non-diabetic Aboriginal Australians. International Journal of Epidemiology. 2006, 35: 1331-1335. 10.1093/ije/dyl115. R Development Core Team: R: A Language and Environment for Statistical Computing. 2008, Vienna: R Foundation for Statistical Computing Nelson RG, Bennett PH, Beck GJ, Tan M, Knowler WC, Mitch WE: Development and progression of renal disease in Pima Indians with non-insulin-dependent diabetes mellitus. Diabetic Renal Disease Study Group. New England Journal of Medicine. 1996, 335: 1636-1642. Jin Y, Moriya T, Tanaka K, Matsubara M, Fujita Y: Glomerular hyperfiltration in non-proteinuric and non-hypertensive Japanese type 2 diabetic patients. Diabetes Research and Clinical Practice. 2006, 71: 264-271. 10.1016/j.diabres.2005.06.014. Hofso D, Jenssen T, Hager H, Roislien J, Hjelmesaeth J: Fasting plasma glucose in the screening for type 2 diabetes in morbidly obese subjects. Obes Surg. 2010, 20: 302-307. 10.1007/s11695-009-0022-5. Volpi E, Nazemi R, Fujita S: Muscle tissue changes with aging. Current Opinion in Clinical Nutrition & Metabolic Care. 2004, 7: 405-410. Biomarkers Definitions Working Group: Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clinical Pharmacology and Therapeutics. 2001, 69: 89-95. 10.1067/mcp.2001.113989. The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1472-6823/10/6/prepub