Low-rank tensor completion by Riemannian optimization
Tóm tắt
Từ khóa
Tài liệu tham khảo
Absil, P.A., Malick, J.: Projection-like retractions on matrix manifolds. SIAM J. Control Optim. 22(1), 135–158 (2012)
Absil, P.A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2008)
Acar, E., Dunlavy, D.M., Kolda, T.G., Mørup, M.: Scalable tensor factorizations for incomplete data. Chemom. Intell. Lab. Syst. 106, 41–56 (2011)
Bader, B.W., Kolda, T.G., et al.: Matlab tensor toolbox version 2.5 (2012). Available from http://www.sandia.gov/~tgkolda/TensorToolbox/
Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena Scientific, Belmont (1999)
Candès, E.J., Tao, T.: The power of convex relaxation: near-optimal matrix completion. IEEE Trans. Inf. Theory 56(5), 2053–2080 (2009)
Chern, J.L., Dieci, L.: Smoothness and periodicity of some matrix decompositions. SIAM J. Matrix Anal. Appl. 22(3), 772–792 (2000)
Da Silva, C., Herrmann, F.J.: Hierarchical Tucker tensor optimization—applications to tensor completion. In: Proc. 10th International Conference on Sampling Theory and Applications (2013)
De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21(4), 1253–1278 (2000)
Foster, D.H., Nascimento, S.M.C., Amano, K.: Information limits on neural identification of colored surfaces in natural scenes. Vis. Neurosci. 21, 331–336 (2004)
Gandy, S., Recht, B., Yamada, I.: Tensor completion and low-n-rank tensor recovery via convex optimization. Inverse Probl. 27(2), 025010 (2011)
Grasedyck, L., Kressner, D., Tobler, C.: A literature survey of low-rank tensor approximation techniques. GAMM-Mitt. 36(1), 53–78 (2013)
Keshavan, R.H., Montanari, A., Oh, S.: Matrix completion from noisy entries. J. Mach. Learn. Res. 11, 2057–2078 (2010)
Koch, O., Lubich, C.: Dynamical tensor approximation. SIAM J. Matrix Anal. Appl. 31(5), 2360–2375 (2010)
Liu, Y., Shang, F.: An efficient matrix factorization method for tensor completion. IEEE Signal Process. Lett. 20(4), 307–310 (2013)
Liu, J., Musialski, P., Wonka, P., Ye, J.: Tensor completion for estimating missing values in visual data. In: Proc. IEEE 12th International Conference on Computer Vision, pp. 2114–2121 (2009)
Ma, Y., Wright, J., Ganesh, A., Zhou, Z., Min, K., Rao, S., Lin, Z., Peng, Y., Chen, M., Wu, L., Candès, E., Li, X.: Low-rank matrix recovery and completion via convex optimization. Survey website. http://perception.csl.illinois.edu/matrix-rank/ . Accessed: 22 April 2013
Mishra, B., Meyer, G., Bonnabel, S., Sepulchre, R.: Fixed-rank matrix factorizations and Riemannian low-rank optimization (2012). arXiv:1209.0430
Mu, C., Huang, B., Wright, J., Goldfarb, D.: Square deal: lower bounds and improved relaxations for tensor recovery (2013). arXiv:1307.5870
Ngo, T., Saad, Y.: Scaled gradients on Grassmann manifolds for matrix completion. In: Bartlett, P., Pereira, F., Burges, C., Bottou, L., Weinberger, K. (eds.) Advances in Neural Information Processing Systems, vol. 25, pp. 1421–1429 (2012)
Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer Series in Operations Research. Springer, Berlin (2006)
Rauhut, H., Schneider, R., Stojanac, Z.: Low rank tensor recovery via iterative hard thresholding. In: Proc. 10th International Conference on Sampling Theory and Applications (2013)
Schwab, C., Gittelson, C.J.: Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs. Acta Numer. 20, 291–467 (2011)
Signoretto, M., De Lathauwer, L., Suykens, J.A.K.: Nuclear norms for tensors and their use for convex multilinear estimation. Tech. Rep. 10-186, K. U. Leuven (2010)
Signoretto, M., Tran Dinh, Q., De Lathauwer, L., Suykens, J.A.K.: Learning with tensors: a framework based on convex optimization and spectral regularization. Tech. Rep. 11-129, K. U. Leuven (2011)
Signoretto, M., Van de Plas, R., De Moor, B., Suykens, J.A.K.: Tensor versus matrix completion: a comparison with application to spectral data. IEEE Signal Process. Lett. 18(7), 403–406 (2011)
Uschmajew, A.: Zur Theorie der Niedrigrangapproximation in Tensorprodukten von Hilberträumen. Ph.D. thesis, Technische Universität, Berlin (2013)
Uschmajew, A., Vandereycken, B.: The geometry of algorithms using hierarchical tensors. Linear Algebra Appl. 439(1), 133–166 (2013)