Low-profile metasurface-based dual-band graphene patch nanoantenna

Nano Communication Networks - Tập 35 - Trang 100428 - 2023
Arun Kumar Varshney1, Nagendra P. Pathak1, Debabrata Sircar2
1Indian Institute of Technology Roorkee, Department of Electronics and Communication Engineering, Roorkee 247667, India
2Indian Institute of Technology Roorkee, Department of Biosciences and Bioengineering, Roorkee 247667, India

Tài liệu tham khảo

Hillger, 2019, Terahertz imaging and sensing applications with silicon-based technologies, IEEE Trans. Terahertz Sci. Technol., 9, 1, 10.1109/TTHZ.2018.2884852 Graf, 2015, Terahertz heterodyne array receivers for astronomy, J. Infrared Millim. Terahertz Waves, 36, 896, 10.1007/s10762-015-0171-7 Hübers, 2019, High-resolution terahertz spectroscopy with quantum-cascade lasers, J. Appl. Phys., 125, 1, 10.1063/1.5084105 Siegel, 2004, Terahertz technology in biology and medicine, IEEE Trans. Microw. Theory Tech., 52, 2438, 10.1109/TMTT.2004.835916 Piesiewicz, 2007, Short-range ultra-broadband terahertz communications: Concepts and perspectives, IEEE Antennas Propag. Mag., 49, 24, 10.1109/MAP.2007.4455844 Correas-Serrano, 2017 Farmani, 2018, Broadly tunable and bidirectional terahertz graphene plasmonic switch based on enhanced Goos-Hänchen effect, Appl. Surf. Sci., 453, 358, 10.1016/j.apsusc.2018.05.092 Cai, 2018, Graphene-based plasmonic tunable dual-band bandstop filter in the far-infrared region, IEEE Photon. J., 10, 1 Mohammadi Dinani, 2020, Compact, low-loss, and wideband graphene-based directional coupler in the terahertz and infrared frequency ranges, J. Opt. Soc. Am. B, 37, 329, 10.1364/JOSAB.377218 Kumar Ghosh, 2021, Graphene-based dual functional metadevice in the THz gap, Appl. Opt., 60, 11247, 10.1364/AO.444873 He, 2021, Graphene-based metasurface sensing applications in terahertz band, Results Phys., 21, 10.1016/j.rinp.2020.103795 Justino, 2017, Graphene based sensors and biosensors, TRAC Trends Anal. Chem., 91, 53, 10.1016/j.trac.2017.04.003 Yavari, 2012, Graphene-based chemical sensors, J. Phys. Chem. Lett., 3, 1746, 10.1021/jz300358t Huang, 2019, Graphene-based sensors for human health monitoring, Front. Chem., 7, 10.3389/fchem.2019.00399 He, 2014, Comparison of graphene-based transverse magnetic and electric surface plasmon modes, IEEE J. Sel. Top. Quantum Electron., 20, 1 Low, 2014, Graphene plasmonics for terahertz to mid-infrared applications, ACS Nano, 8, 1086, 10.1021/nn406627u Chen, 2014, Graphene-based plasmonic platform for reconfigurable terahertz nanodevices, ACS Photonics, 1, 647, 10.1021/ph500046r Wang, 2019, Optical transport properties of graphene surface plasmon polaritons in mid-infrared band, Crystals, 9, 10.3390/cryst9070354 Mishra, 2017, Dual and wideband slot loaded stacked microstrip patch antenna for WLAN/WiMAX applications, Microsyst. Technol., 23, 3467, 10.1007/s00542-016-3120-z Huang, 2003, Dual-band microstrip antenna using capacitive loading, IEE Proc., Microw. Antennas Propag., 150, 401, 10.1049/ip-map:20031015 Ali, 2016, Design of dual-band microstrip patch antenna with defected ground plane for modern wireless applications Zong, 2015, Compact low-profile dual-band patch antenna using novel TL-MTM structures, IEEE Antennas Wirel. Propag. Lett., 14, 567, 10.1109/LAWP.2014.2372093 Chen, 2010, Compact dual-band GPS microstrip antenna using multilayer LTCC substrate, IEEE Antennas Wirel. Propag. Lett., 9, 421, 10.1109/LAWP.2010.2049822 Sun, 2019, Terahertz low profile antenna based on spoof surface plasmon polaritons, 772 Luk, 2017, A microfabricated low-profile wideband antenna array for terahertz communications, Sci. Rep., 7, 1, 10.1038/s41598-017-01276-4 Wang, 2013, A novel tunable antenna at THz frequencies using graphene-based artificial magnetic conductor (AMC), Prog. Electromagn. Res. Lett., 41, 29, 10.2528/PIERL13050203 Lv, 2020, Dual-band dual-polarization reconfigurable THz antenna based on graphene, Appl. Phys. Express, 13, 10.35848/1882-0786/ab9e4b Kazemi, 2020, Dual band compact fractal THz antenna based on CRLH-TL and graphene loads, Optik, 206, 10.1016/j.ijleo.2020.164369 Huang, 2012, Design of a beam reconfigurable THz antenna with graphene-based switchable high-impedance surface, IEEE Trans. Nanotechnol., 11, 836, 10.1109/TNANO.2012.2202288 Wang, 2015, Reconfigurable terahertz leaky-wave antenna using graphene-based high-impedance surface, IEEE Trans. Nanotechnol., 14, 62, 10.1109/TNANO.2014.2365205 Zhao, 2002, Terahertz dielectric properties of polystyrene foam, J. Opt. Soc. Am. B, 19, 1476, 10.1364/JOSAB.19.001476 Luukkonen, 2008, Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches, IEEE Trans. Antennas Propag., 56, 1624, 10.1109/TAP.2008.923327 Y.J. Yoon, B. Kim, A new formula for effective dielectric constant in multi-dielectric layer microstrip structure, in: IEEE 9th Top. Meet. Electr. Perform. Electron. Packag. (Cat. No. 00TH8524), IEEE, n.d., pp. 163–167, http://dx.doi.org/10.1109/EPEP.2000.895519. Hanson, 2008, Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene, J. Appl. Phys., 103, 1, 10.1063/1.2891452 He, 2014, Comparison of graphene-based transverse magnetic and electric surface plasmon modes, IEEE J. Sel. Top. Quantum Electron., 20, 62, 10.1109/JSTQE.2013.2257991 Gatte, 2016, The performance improvement of THz antenna via modeling and characterization of doped graphene, Prog. Electromagn. Res. M, 49, 21, 10.2528/PIERM16050405 Wan, 2020, Low-profile broadband patch-driven metasurface antenna, IEEE Antennas Wirel. Propag. Lett., 19, 1251, 10.1109/LAWP.2020.2997346 Huang, 2016, Polarization conversion of metasurface for the application of wide band low-profile circular polarization slot antenna, Appl. Phys. Lett., 109, 10.1063/1.4960198 Gustavsen, 1999, Rational approximation of frequency domain responses by vector fitting, IEEE Trans. Power Deliv., 14, 1052, 10.1109/61.772353 Gustavsen, 2006, Improving the pole relocating properties of vector fitting, IEEE Trans. Power Deliv., 21, 1587, 10.1109/TPWRD.2005.860281 Antonini, 2003, Spice equivalent circuits of frequency-domain responses, IEEE Trans. Electromagn. Compat., 45, 502, 10.1109/TEMC.2003.815528 Semlyen, 2009, A half-size singularity test matrix for fast and reliable passivity assessment of rational models, IEEE Trans. Power Deliv., 24, 345, 10.1109/TPWRD.2008.923406 Gustavsen, 2008, Fast passivity enforcement for pole-residue models by perturbation of residue matrix eigenvalues, IEEE Trans. Power Deliv., 23, 2278, 10.1109/TPWRD.2008.919027