Low-profile metasurface-based dual-band graphene patch nanoantenna
Tài liệu tham khảo
Hillger, 2019, Terahertz imaging and sensing applications with silicon-based technologies, IEEE Trans. Terahertz Sci. Technol., 9, 1, 10.1109/TTHZ.2018.2884852
Graf, 2015, Terahertz heterodyne array receivers for astronomy, J. Infrared Millim. Terahertz Waves, 36, 896, 10.1007/s10762-015-0171-7
Hübers, 2019, High-resolution terahertz spectroscopy with quantum-cascade lasers, J. Appl. Phys., 125, 1, 10.1063/1.5084105
Siegel, 2004, Terahertz technology in biology and medicine, IEEE Trans. Microw. Theory Tech., 52, 2438, 10.1109/TMTT.2004.835916
Piesiewicz, 2007, Short-range ultra-broadband terahertz communications: Concepts and perspectives, IEEE Antennas Propag. Mag., 49, 24, 10.1109/MAP.2007.4455844
Correas-Serrano, 2017
Farmani, 2018, Broadly tunable and bidirectional terahertz graphene plasmonic switch based on enhanced Goos-Hänchen effect, Appl. Surf. Sci., 453, 358, 10.1016/j.apsusc.2018.05.092
Cai, 2018, Graphene-based plasmonic tunable dual-band bandstop filter in the far-infrared region, IEEE Photon. J., 10, 1
Mohammadi Dinani, 2020, Compact, low-loss, and wideband graphene-based directional coupler in the terahertz and infrared frequency ranges, J. Opt. Soc. Am. B, 37, 329, 10.1364/JOSAB.377218
Kumar Ghosh, 2021, Graphene-based dual functional metadevice in the THz gap, Appl. Opt., 60, 11247, 10.1364/AO.444873
He, 2021, Graphene-based metasurface sensing applications in terahertz band, Results Phys., 21, 10.1016/j.rinp.2020.103795
Justino, 2017, Graphene based sensors and biosensors, TRAC Trends Anal. Chem., 91, 53, 10.1016/j.trac.2017.04.003
Yavari, 2012, Graphene-based chemical sensors, J. Phys. Chem. Lett., 3, 1746, 10.1021/jz300358t
Huang, 2019, Graphene-based sensors for human health monitoring, Front. Chem., 7, 10.3389/fchem.2019.00399
He, 2014, Comparison of graphene-based transverse magnetic and electric surface plasmon modes, IEEE J. Sel. Top. Quantum Electron., 20, 1
Low, 2014, Graphene plasmonics for terahertz to mid-infrared applications, ACS Nano, 8, 1086, 10.1021/nn406627u
Chen, 2014, Graphene-based plasmonic platform for reconfigurable terahertz nanodevices, ACS Photonics, 1, 647, 10.1021/ph500046r
Wang, 2019, Optical transport properties of graphene surface plasmon polaritons in mid-infrared band, Crystals, 9, 10.3390/cryst9070354
Mishra, 2017, Dual and wideband slot loaded stacked microstrip patch antenna for WLAN/WiMAX applications, Microsyst. Technol., 23, 3467, 10.1007/s00542-016-3120-z
Huang, 2003, Dual-band microstrip antenna using capacitive loading, IEE Proc., Microw. Antennas Propag., 150, 401, 10.1049/ip-map:20031015
Ali, 2016, Design of dual-band microstrip patch antenna with defected ground plane for modern wireless applications
Zong, 2015, Compact low-profile dual-band patch antenna using novel TL-MTM structures, IEEE Antennas Wirel. Propag. Lett., 14, 567, 10.1109/LAWP.2014.2372093
Chen, 2010, Compact dual-band GPS microstrip antenna using multilayer LTCC substrate, IEEE Antennas Wirel. Propag. Lett., 9, 421, 10.1109/LAWP.2010.2049822
Sun, 2019, Terahertz low profile antenna based on spoof surface plasmon polaritons, 772
Luk, 2017, A microfabricated low-profile wideband antenna array for terahertz communications, Sci. Rep., 7, 1, 10.1038/s41598-017-01276-4
Wang, 2013, A novel tunable antenna at THz frequencies using graphene-based artificial magnetic conductor (AMC), Prog. Electromagn. Res. Lett., 41, 29, 10.2528/PIERL13050203
Lv, 2020, Dual-band dual-polarization reconfigurable THz antenna based on graphene, Appl. Phys. Express, 13, 10.35848/1882-0786/ab9e4b
Kazemi, 2020, Dual band compact fractal THz antenna based on CRLH-TL and graphene loads, Optik, 206, 10.1016/j.ijleo.2020.164369
Huang, 2012, Design of a beam reconfigurable THz antenna with graphene-based switchable high-impedance surface, IEEE Trans. Nanotechnol., 11, 836, 10.1109/TNANO.2012.2202288
Wang, 2015, Reconfigurable terahertz leaky-wave antenna using graphene-based high-impedance surface, IEEE Trans. Nanotechnol., 14, 62, 10.1109/TNANO.2014.2365205
Zhao, 2002, Terahertz dielectric properties of polystyrene foam, J. Opt. Soc. Am. B, 19, 1476, 10.1364/JOSAB.19.001476
Luukkonen, 2008, Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches, IEEE Trans. Antennas Propag., 56, 1624, 10.1109/TAP.2008.923327
Y.J. Yoon, B. Kim, A new formula for effective dielectric constant in multi-dielectric layer microstrip structure, in: IEEE 9th Top. Meet. Electr. Perform. Electron. Packag. (Cat. No. 00TH8524), IEEE, n.d., pp. 163–167, http://dx.doi.org/10.1109/EPEP.2000.895519.
Hanson, 2008, Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene, J. Appl. Phys., 103, 1, 10.1063/1.2891452
He, 2014, Comparison of graphene-based transverse magnetic and electric surface plasmon modes, IEEE J. Sel. Top. Quantum Electron., 20, 62, 10.1109/JSTQE.2013.2257991
Gatte, 2016, The performance improvement of THz antenna via modeling and characterization of doped graphene, Prog. Electromagn. Res. M, 49, 21, 10.2528/PIERM16050405
Wan, 2020, Low-profile broadband patch-driven metasurface antenna, IEEE Antennas Wirel. Propag. Lett., 19, 1251, 10.1109/LAWP.2020.2997346
Huang, 2016, Polarization conversion of metasurface for the application of wide band low-profile circular polarization slot antenna, Appl. Phys. Lett., 109, 10.1063/1.4960198
Gustavsen, 1999, Rational approximation of frequency domain responses by vector fitting, IEEE Trans. Power Deliv., 14, 1052, 10.1109/61.772353
Gustavsen, 2006, Improving the pole relocating properties of vector fitting, IEEE Trans. Power Deliv., 21, 1587, 10.1109/TPWRD.2005.860281
Antonini, 2003, Spice equivalent circuits of frequency-domain responses, IEEE Trans. Electromagn. Compat., 45, 502, 10.1109/TEMC.2003.815528
Semlyen, 2009, A half-size singularity test matrix for fast and reliable passivity assessment of rational models, IEEE Trans. Power Deliv., 24, 345, 10.1109/TPWRD.2008.923406
Gustavsen, 2008, Fast passivity enforcement for pole-residue models by perturbation of residue matrix eigenvalues, IEEE Trans. Power Deliv., 23, 2278, 10.1109/TPWRD.2008.919027
