Đậu nành phốt phát thấp: Kỹ thuật chỉnh sửa gen CRISPR-Cas9 trong công nghệ kỹ thuật chuyển hóa thế hệ tiếp theo

Veda Krishnan1,2, Monica Jolly1, Vinutha T.1, Manickavasagam M.2, Archana Sachdev1
1Division of Biochemistry, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
2Department of Biotechnology, Bharathidasan University, Thiruchirappalli, India

Tóm tắt

Kỹ thuật chuyển hóa thế hệ tiếp theo mở rộng khả năng sử dụng cây trồng như các nhà máy sinh học để sản xuất hàng loạt các metabolite. Hệ thống CRISPR/Cas9 là công cụ chỉnh sửa gen mới nhất và được áp dụng rộng rãi nhất cho kỹ thuật chuyển hóa nhằm nâng cao tính trạng cây trồng. Trong phương pháp được hướng dẫn bởi RNA này, tất cả các sgRNA không có hiệu quả như nhau và điều quan trọng là phải giảm thiểu rủi ro khi sử dụng sgRNA không hiệu quả tạo ra các biến dị không mong muốn. Trong nghiên cứu này, chúng tôi đã thiết kế hai sgRNA nhắm vào bước cuối cùng của sinh tổng hợp phytat, GmIPK1- exon 6 (KS1) và 1 (KS2) và xác nhận hiệu quả của chúng bằng cách sử dụng các công cụ in silico khác nhau. Chúng tôi đã xác nhận hiệu quả chức năng của sgRNAs bằng cách sử dụng AGRODATE (thí nghiệm đĩa do Agrobacterium thực hiện cho biểu hiện tạm thời) trước khi phát triển các biến thể ổn định. Phân tích thống kê kết hợp về tỷ lệ đột biến trong các biến thể tạm thời cho thấy các đột biến thiếu hụt, cụ thể là KS1_sgRNA1 (76.4%) thuộc khoảng từ 1 đến 7 nucleotide và các biến thể theo chiều cao chiếm (23.4%), trong trường hợp của KS2_sgRNA2, có 85.2% thiếu hụt được quan sát trong khoảng từ 1 đến 6 nucleotide, trong khi các biến thể theo chiều cao chiếm (13.2%). Phân tích trình tự của các sản phẩm khuếch đại cho thấy sự hiện diện của các đột biến trong 12 trong số 16 dòng transgenic dương tính (75%). Phân tích phytat của các biến thể knock-out sgRNA1 cho thấy giảm khoảng 6.6 lần, trong khi biến thể knock-out sgRNA2 cho thấy giảm 7.05 lần trong các biến thể đậu nành T0 ổn định. Chiến lược được thực hiện trong nghiên cứu này là báo cáo đầu tiên về một hệ thống chỉnh sửa CRISPR/Cas9 hiệu quả cao sử dụng gRNA chimeric trong giống đậu nành DS9712, củng cố tầm quan trọng của việc phát triển đậu nành phốt phát thấp với tiềm năng lớn cho ngành thực phẩm và thức ăn chăn nuôi.

Từ khóa

#CRISPR/Cas9 #chỉnh sửa gen #kỹ thuật chuyển hóa #đậu nành phốt phát thấp #sinh tổng hợp phytat #biến thể knock-out.

Tài liệu tham khảo

Ali N, Paul S, Gayen D, Sarkar SN, Datta K, Datta SK (2013) Development of low phytate rice by RNAi mediated seed-specific silencing of inositol 1, 3, 4, 5, 6-pentakisphosphate 2-kinase gene (IPK1). PLoS ONE 8:1–12 Bae S, Kweon J, Kim HS, Kim JS (2014) Microhomology-based choice of Cas9 nuclease target sites. Nat Methods 11:705–706 Baltes NJ, Gil-Humanes J, Cermak T, Atkins PA, Voytas DF (2014) DNA replicons for plant genome engineering. Plant Cell 26:151–163 Cai Y, Chen L, Liu X, Sun S, Wu C, Jiang B (2015) CRISPR/Cas9-mediated genome editing in soybean hairy roots. PLoS ONE 10:e0136064 Chandrasekaran JM, Brumin D, Wolf D, KlapLeibman C, Pearlsman M (2016) Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol Plant Pathol 17:1140–1153 Du H, Zeng X, Zhao M, Cui X, Wang Q, Yang H (2016) Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9. J Biotechnol 217:90–97 Fan D, Liu T, Li C, Jiao B, Hou Y, Luol K (2015) Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation. Sci Rep 5:12217 Feng Z, Mao Y, Xu N, Zhang B, Wei P, Yang DL, Wang Z (2014) Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proc Natl Acad Sci USA 111:4632–4637 Fister AS, Landherr L, Maximova SN, Guiltinan MJ (2018) Transient expression of CRISPR/Cas9 machinery targeting TcNPR3 enhances defense response in Theobroma cacao. Front Plant Sci 9:268 Gaj T, Gersbach CA, Barbas CF (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405 Gillman J, Pantalone V, Bilyeu K (2009) The low phytic acid phenotype in soybean line CX1834 is due to mutations in two homologs of the maize low phytic acid gene. Plant Genome 2:179–190 Hada A, Krishnan V, Punjabi M, Basak N, Pandey V, Jeevaraj T, Marathe A, Gupta AK, Jolly M, Kumar A, Dahuja A, Manickavasagam M, Ganapathi A, Sachdev A (2016) Refined glufosinate selection and its extent of exposure for improving the Agrobacterium-mediated transformation in Indian soybean (Glycine max) genotype JS-335. Plant Biotechnol 33:341–350 Hines PA, Agricola E, Llinares Garcia J, O’Dwyer L, Herold R (2022) Therapeutic genome editing: regulatory horizons. Nat Rev Drug Discovery 21(1):1–2 Hitz W, Carlson TJ, Kerr PS, Sebastian SA (2002) Biochemical and molecular characterization of a mutation that confers a decreased raffinosaccharide and phytic acid phenotype on soybean seeds. Plant Physiol 128:650–660. https://doi.org/10.1104/pp.010585 Hofacker IL (2003) Vienna RNA secondary structure server. Nucleic Acids Res 31:3429–3431 Jacobs TB, LaFayette PR, Schmitz RJ, Parrott WA (2015) Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol 15:1 Jia H, Wang N (2014) Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS ONE 9:e93806 Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP (2013a) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41:e188 Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA (2013b) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31:233–239 Kaur N, Alok A, Kaur N, Pandey P, Awasthi P, Tiwari S (2017) CRISPR/Cas9-mediated efficient editing in phytoene desaturase (PDS) demonstrates precise manipulation in banana cv. Rasthali Genome. Func Integr Genomics 18:89–99 Klimek-Chodacka M, Oleszkiewicz T, Lowder LG, Qi Y, Baranski R (2018) Efficient CRISPR/Cas9-based genome editing in carrot cells. Plant Cell Rep 37:575–586 Krishnan V, Joshna J, Jolly M, Manickavasagam M, Praveen S, Sachdev A (2019a) ‘AGRODATE’: a rapid Agrobacterium-mediated transient expression tool for gene function analysis in leaf discs. J Plant Biochem Biotechnol. https://doi.org/10.1007/s13562-019-00536-w Krishnan V, Gothwal S, Dahuja A, Vinutha T, Singh B, Jolly M, Praveen S, Sachdev A (2019b) Enhanced nutraceutical potential of gamma irradiated black soybean extracts. Food Chem 245:246–253 Kumar A, Kumar V, Krishnan V, Hada A, Marathe C, Parameswaran C, Jolly M, Sachdev A (2019) Seed targeted RNAi-mediated silencing of GmMIPS1 limits phytate accumulation and improves mineral bioavailability in soybean. Sci Rep 9:7744 Kumari S, Jolly M, Krishnan V, Dahuja A, Sachdev A (2012) Spatial and temporal expression analysis of d-myo-inositol 3-phosphate synthase (MIPS) gene family in Glycine max. Afr J Biotechnol 11(98):16443–16454 Kuscu C, Arslan S, Singh R, Thorpe J, Adli M (2014) Genome-wide analysis reveals characteristics of off target sites bound by the Cas9 endonuclease. Nat Biotechnol 32:677–683 Lawrenson T, Shorinola O, Stacey N, Li C, Stergaard L, Patron N, Uauy C, Li C (2015) Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome Biol 16:258 Lee Y, Bak G, Choi Y, Chuang W, Cho H, Lee L (2008) Roles of phosphatidylinositol 3-kinase in root hair growth. Plant Physiol 147:624–635 Li JF, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31:688–691 Liang Z, Zhang K, Chen K, Gao C (2014) Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J Genet Genomics 41:63–68 Loewus FA, Murthy PPN (2000) myo-inositol metabolism in plants. Plant Sci 150:1–19 Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Wang B, Yang Z, Li H, Lin Y, Xie Y, Shen R, Chen S, Wang Z, Chen Y, Guo J, Chen L, Zhao X, Dong Z, Liu YG (2015) A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot Plants. Mol Plant 8:1274–1284 Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, Moineau S, Mojica FJ, Wolf YI, Yakunin AF, Van Der Oost J (2011) Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 9:467–477 Meltzer H, Marom E, Alyagor I et al (2019) Tissue-specific (ts) CRISPR as an efficient strategy for in vivo screening in Drosophila. Nat Commun 10:2113. https://doi.org/10.1038/s41467-019-10140-0 Michno J, Wang X, Liu J, Curtin SJ, Kono TJ, Stupar RM (2015) CRISPR/Cas mutagenesis of soybean and Medicago truncatula using a new web-tool and a modified Cas9 enzyme. GM Crops Food 6:243–252 Nakano M, Yamada T, Masuda Y, Sato Y, Kobayashi H, Ueda H, Morita R, Nishimura M, Kitamura K, Kusaba M (2014) A green-cotyledon/stay-green mutant exemplifies the ancient whole-genome duplications in soybean. Plant Cell Physiol 55:1763–1771 Nekrasov V, Staskawicz B, Weigel D, Jones JD, Kamoun S (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 31:691–693 Nunes ACS, Vianna GR, Cuneo F, Amaya-Farfán J, de Capdeville G, Rech EL, Aragão FJL (2006) RNAi-mediated silencing of the myo-inositol-1-phosphate synthase gene (GmMIPS1) in transgenic soybean inhibited seed development and reduced phytate content. Planta 224:125–132 Pandey V, Krishnan V, Basak N, Hada A, Punjabi M, Jolly M, Lal SK, Singh SB, Sachdev A (2016) Phytic acid dynamics during seed development and it’s composition in yellow and black Indian soybean (Glycine max L.) genotypes through a modified extraction and HPLC method. J Plant Biochem Biotechnol 25:367–374 Punjabi M, Bharadvaja N, Jolly M, Dahuja A, Sachdev A (2018) Development and evaluation of low phytic acid soybean by siRNA triggered seed specific silencing of inositol polyphosphate 6-/3-/5-kinase gene. Front Plant Sci 9:804 Ron M, Kajala K, Pauluzzi G, Wang D, Reynoso MA, Zumstein K, Garcha J, Winte S, Masson H, Inagaki S, Federici F (2014) Hairy root transformation using agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model. Plant Physiol 166:455–469 Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor Sattar MN, Iqbal Z, Tahir MN, Shahid MS, Khurshid M, Al-Khateeb AA, Al-Khateeb SA (2017) CRISPR/Cas9: a practical approach in date palm genome editing. Front Plant Sci 8:1469 Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu JL, Gao C (2013) Targeted genome modification of crop plants using a CRISPR–Cas system. Nat Biotechnol 31:686–688 Shi J, Wang H, Schellin K, Li B, Faller M, Stoop JM, Meeley RB, Ertl DS, Ranch JP, Glassman K (2007) Embryo-specific silencing of a transporter reduces phytic acid content of maize and soybean seeds. Nat Biotechnol 25:930–937 Sun Y, Thompson M, Lin G, Butler H, Gao Z, Thornburgh S, Yau K, Smith DA, Shukla VK (2007) Inositol 1,3,4,5,6-pentakisphosphate 2-kinase from maize: Molecular and biochemical characterization. Plant Physiol 144:1278–1291 Sun X, Hu Z, Chen R, Jiang Q, Song G, Zhang H, Xi Y (2015) Targeted mutagenesis in soybean using the CRISPR-Cas9 system. Sci Rep 5:10342 Tian S, Jiang L, Gao Q, Zhang J, Zong M, Zhang H, Ren Y, Guo S, Gong G, Liu F, Xu Y (2017) Efficient RISPR/Cas9 based gene knockout in watermelon. Plant Cell Rep 36:399–406 Van der Hoorn RAL, Laurent F, Roth R, Wit PJD (2000) Agro infiltration is a versatile tool that facilitates analyses of Avr9/Cf-9-induced and Avr4/Cf-4-induced necrosis. Mol Plant Microbe in 13:439–446 Wang T, Wei JJ, Sabatini DM, Lander ES (2014) Genetic screens in human cells using the CRISPR-Cas9 system. Sci 343:80–84 Wang S, Zhang S, Wang W, Xiong X, Meng F, Cui X (2015) Efficient targeted mutagenesis in potato by the CRISPR/Cas9 system. Plant Cell Rep 34:1473–1476 Wilcox JR, Premachandra GS, Young KA, Raboy V (2000) Isolation of high seed inorganic P, low-phytate soybean mutants. Crop Sci 40:1601–1605. https://doi.org/10.2135/cropsci2000.4061601x Wong N, Liu W, Wang X (2015) WU-CRISPR: characteristics of functional guide RNAs for the CRISPR/Cas9 system. Genome Biol 16:218 Woo JW, Kim J, Kwon SI, Corvalán C, Cho SW, Kim H, Kim SG, Kim ST, Choe S, Kim JS (2015) DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol 33:1162–1164 Xie K, Yang Y (2013) RNA-guided genome editing in plants using a CRISPR–Cas system. Mol Plant 6:1975–1983 Xu R, Li H, Qin R, Wang L, Li L, Wei P, Yang J (2014) Gene targeting using the Agrobacterium tumefaciens-mediated CRISPR-Cas system in rice. Rice (N.y) 7:5 Yagiz A, Gurkok T, Zhang B, Unver T (2016) Manipulating the biosynthesis of bioactive compound alkaloids for next generation metabolic engineering in opium poppy using CRISPR-Cas9 genome editing technology. Sci Rep 6:30910 Zhou X, Jacobs TB, Xue LJ, Harding SA, Tsai CJ (2015) Exploiting SNPs for biallelic CRISPR mutations in the outcrossing woody perennial Populus reveals 4-coumarate: CoA ligase specificity and redundancy. New Phytol 208:298–301