Low-order penalty equations for semidefinite linear complementarity problems

Operations Research Letters - Tập 44 - Trang 342-347 - 2016
Chen Zhao1, Ziyan Luo2, Naihua Xiu1
1Department of Mathematics, Beijing Jiaotong University, Beijing 100044, PR China
2State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, PR China

Tài liệu tham khảo

Alizadeh, 1995, Interior point methods in semidefinite programming with applications to combinatorial optimization, SIAM J. Optim., 5, 13, 10.1137/0805002 Baes, 2007, Convexity and differentiability properties of spectral functions and spectral mappings on euclidean jordan algebras, Linear Algebra Appl., 422, 664, 10.1016/j.laa.2006.11.025 Balakrishnan, 2000, Semidefinite programming in systems and control theory, vol. 27, 421 Boyd, 1994 Chen, 2013, Optimality conditions and a smoothing trust region Newton method for nonlipschitz optimization, SIAM J. Optim., 23, 1528, 10.1137/120871390 Chen, 2006, Cartesian P-property and its applications to the semidefinite linear complementarity problem, Math. Program., 106, 177, 10.1007/s10107-005-0601-8 Chen, 2003, Non-interior continuation methods for solving semidefinite complementarity problems, Math. Program., 95, 431, 10.1007/s10107-002-0306-1 Francisco Facchinei, 2003 Gowda, 2000, On semidefinite linear complementarity problems, Springer Math. Program., 88, 575, 10.1007/PL00011387 Gowda, 2002, Some new results for the semidefinite linear complementarity problem, SIAM J. Matrix Anal. Appl., 24, 25, 10.1137/S0895479800377927 Hao, 2015, A power penalty method for second-order cone linear complementarity problems, Oper. Res. Lett., 43, 137, 10.1016/j.orl.2014.12.012 Hao, 2015, A power penalty method for second-order cone nonlinear complementarity problems, J. Comput. Appl. Math., 290, 136, 10.1016/j.cam.2015.05.007 Hu, 2009, A nonmonotone smoothing Newton algorithm for solving nonlinear complementarity problems, Optim. Methods Softw., 24, 447, 10.1080/10556780902769862 Huang, 2010, A power penalty approach to a nonlinear complementarity problem, Oper. Res. Lett., 38, 72, 10.1016/j.orl.2009.09.009 Kanzow, 2002, Semidefinite programs: New search directions, smoothing-type methods, and numerical results, SIAM J. Optim., 13, 1, 10.1137/S1052623401390525 Kojima, 1997, Interior-point methods for the monotone semidefinite linear complementarity problem in symmetric matrices, SIAM J. Optim., 7, 86, 10.1137/S1052623494269035 Löwner, 1934, Über monotone matrixfunktionen, Math. Z., 38, 177, 10.1007/BF01170633 Shida, 1998, Existence and uniqueness of search directions in interior-point algorithms for the SDP and the monotone SDLCP, SIAM J. Optim., 8, 387, 10.1137/S1052623496300611 Sim, 2007, Underlying paths in interior point methods for the monotone semidefinite linear complementarity problem, Math. Program., 110, 475, 10.1007/s10107-006-0010-7 Song, 2015, On positive semidefinite preserving stein transformation, J. Appl. Math. Inf., 33, 229 Sun, 2006, The strong second-order sufficient condition and constraint nondegeneracy in nonlinear semidefinite programming and their implications, Math. Oper. Res., 31, 761, 10.1287/moor.1060.0195 Sun, 2015, On power penalty methods for linear complementarity problems arising from American option pricing, J. Global Optim., 63, 165, 10.1007/s10898-015-0291-6 Sun, 2005, Strong semismoothness of the Fischer–Burmeister SDC and SOC complementarity functions, Math. Program., 103, 575, 10.1007/s10107-005-0577-4 Sun, 2008, Löwner’s operator and spectral functions in euclidean jordan algebras, Math. Oper. Res., 33, 421, 10.1287/moor.1070.0300 Tian, 2015, A box-constrained differentiable penalty method for nonlinear complementarity problems, J. Global Optim., 62, 729, 10.1007/s10898-015-0275-6 Tseng, 1998, Merit functions for semi-definite complementarity problems, Math. Program., 83, 159, 10.1007/BF02680556 Wang, 2008, A power penalty method for linear complementarity problems, Oper. Res. Lett., 36, 211, 10.1016/j.orl.2007.06.006 Yamashita, 1999, A new merit function and a descent method for semidefinite complementarity problems, 405 Zhang, 2007, A global linear and local quadratic single-tep noninterior continuation method for monotone semidefinite complementarity problems, Acta Math. Sci., 27, 243, 10.1016/S0252-9602(07)60023-X