Low interfacial thermal resistance between crossed ultra-thin carbon nanothreads
Tài liệu tham khảo
Wang, 2017, Graphene integrated photodetectors and opto-electronic devices—a review, Chin. Phys. B, 26, 10.1088/1674-1056/26/3/034203
Chen, 2019, Construction of 3D boron nitride nanosheets/silver networks in epoxy-based composites with high thermal conductivity via in-situ sintering of silver nanoparticles, Chem. Eng. J., 369, 1150, 10.1016/j.cej.2019.03.150
Hoogeboom-Pot, 2015, A new regime of nanoscale thermal transport: collective diffusion increases dissipation efficiency, Proc. Natl. Acad. Sci. U.S.A., 112, 4846, 10.1073/pnas.1503449112
Chen, 2017, Diffusion behavior and mechanical properties of Cu/Ni coating on TC4 alloy, Vacuum, 143, 150, 10.1016/j.vacuum.2017.06.004
Moore, 2014, Emerging challenges and materials for thermal management of electronics, Mater. Today, 17, 163, 10.1016/j.mattod.2014.04.003
Huang, 2012, Role of interface on the thermal conductivity of highly filled dielectric epoxy/AlN composites, J. Phys. Chem. C, 116, 13629, 10.1021/jp3026545
Zhan, 2020, Thermal transport in 3D nanostructures, Adv. Funct. Mater., 30, 10.1002/adfm.201903841
Zhan, 2018, Thermal conduction of one-dimensional carbon nanomaterials and nanoarchitectures, Chin. Phys. B, 27, 10.1088/1674-1056/27/3/038103
H.M. Duong, F. Gong, P. Liu, T.Q. Tran, Advanced fabrication and properties of aligned carbon nanotube composites: experiments and modeling, in: M. Berber (Ed.), Carbon Nanotubes—Current Progress of Their Polymer Composites 2016.
Tran, 2020, High-performance carbon fiber/gold/copper composite wires for lightweight electrical cables, J. Mater. Sci. Technol., 42, 46, 10.1016/j.jmst.2019.08.057
Kim, 2001, Thermal transport measurements of individual multiwalled nanotubes, Phys. Rev. Lett., 87, 10.1103/PhysRevLett.87.215502
Pop, 2006, Thermal conductance of an individual single-wall carbon nanotube above room temperature, Nano Lett., 6, 96, 10.1021/nl052145f
Kumar, 2007, Effect of percolation on thermal transport in nanotube composites, Appl. Phys. Lett., 90, 10.1063/1.2712428
Xu, 2018, Thermal conductive composites reinforced via advanced boron nitride nanomaterials, Compos. Commun., 10, 103, 10.1016/j.coco.2018.08.002
Huxtable, 2003, Interfacial heat flow in carbon nanotube suspensions, Nat. Mater., 2, 731, 10.1038/nmat996
Varshney, 2018, Effect of length, diameter, chirality, deformation, and strain on contact thermal conductance between single-wall carbon nanotubes, Front. Mater., 5
Liao, 2017, Tuning thermal conductance of CNT interface junction via stretching and atomic bonding, J. Phys. D Appl. Phys., 50, 10.1088/1361-6463/aa8ff8
Lee, 2017, Divergent and ultrahigh thermal conductivity in millimeter-long nanotubes, Phys. Rev. Lett., 118, 10.1103/PhysRevLett.118.135901
Ni, 2015, Nanoscale Azide polymer functionalization: a robust solution for suppressing the carbon nanotube–polymer matrix thermal interface resistance, J. Phys. Chem. C, 119, 12193, 10.1021/acs.jpcc.5b02551
Wang, 2014, Introducing thermally stable inter-tube defects to assist off-axial phonon transport in carbon nanotube films, Appl. Phys. Lett., 104, 10.1063/1.4874624
Aitkaliyeva, 2013, Phonon transport assisted by inter-tube carbon displacements in carbon nanotube mats, Sci. Rep., 3, 2774, 10.1038/srep02774
Prasher, 2008, Thermal boundary resistance and thermal conductivity of multiwalled carbon nanotubes, Phys. Rev. B, 77, 10.1103/PhysRevB.77.075424
Fitzgibbons, 2015, Benzene-derived carbon nanothreads, Nat. Mater., 14, 43, 10.1038/nmat4088
Duan, 2018, The chemical structure of carbon nanothreads analyzed by advanced solid-state NMR, J. Appl. Comput. Sci., 140, 7658
Demingos, 2018, Carbon nanothreads from polycyclic aromatic hydrocarbon molecules, Carbon, 140, 644, 10.1016/j.carbon.2018.09.022
Mathijsen, 2016, Beyond carbon fiber: what will be the fibers of choice for future composites?, Reinforc Plast, 60, 38, 10.1016/j.repl.2015.12.003
Zhan, 2017, The best features of diamond nanothread for nanofibre applications, Nat. Commun., 8, 14863, 10.1038/ncomms14863
Zhan, 2016, Diamond nanothread as a new reinforcement for nanocomposites, Adv. Funct. Mater., 26, 5279, 10.1002/adfm.201600119
Zhan, 2016, Thermal conductivity of a new carbon nanotube analog: the diamond nanothread, Carbon, 98, 232, 10.1016/j.carbon.2015.11.012
Varshney, 2017, Understanding thermal conductance across multi-wall carbon nanotube contacts: role of nanotube curvature, Carbon, 114, 15, 10.1016/j.carbon.2016.11.056
Evans, 2010, Thermal conductivity of carbon nanotube cross-bar structures, Nanotechnology, 21, 10.1088/0957-4484/21/47/475704
Yang, 2010, Contact thermal resistance between individual multiwall carbon nanotubes, Appl. Phys. Lett., 96, 10.1063/1.3292203
Yang, 2014, Phonon transport through point contacts between graphitic nanomaterials, Phys. Rev. Lett., 112, 10.1103/PhysRevLett.112.205901
Hoover, 1985, Canonical dynamics: equilibrium phase-space distributions, Phys. Rev., 31, 1695, 10.1103/PhysRevA.31.1695
Nosé, 1984, A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys., 81, 511, 10.1063/1.447334
Schneider, 1978, Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions, Phys. Rev. B, 17, 1302, 10.1103/PhysRevB.17.1302
Plimpton, 1995, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys., 117, 1, 10.1006/jcph.1995.1039
Brenner, 2002, A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons, J. Phys. Condens. Matter, 14, 783, 10.1088/0953-8984/14/4/312
Stuart, 2000, A reactive potential for hydrocarbons with intermolecular interactions, J. Chem. Phys., 112, 6472, 10.1063/1.481208
Zhang, 2015, Stiffness-dependent interlayer friction of graphene, Carbon, 94, 60, 10.1016/j.carbon.2015.06.024
Xia, 2007, Enhancing mechanical properties of multiwall carbon nanotubes via sp3 interwall bridging, Phys. Rev. Lett., 98, 10.1103/PhysRevLett.98.245501
Ni, 2001, Tribological properties of carbon nanotube bundles predicted from atomistic simulations, Surf. Sci., 487, 87, 10.1016/S0039-6028(01)01073-1
Barzegar, 2015, C60/Collapsed carbon nanotube hybrids: a variant of peapods, Nano Lett., 15, 829, 10.1021/nl503388f
Xu, 2015, Systematic enumeration of sp3 nanothreads, Nano Lett., 15, 5124, 10.1021/acs.nanolett.5b01343
Hu, 2013, Thermal resistance between crossed carbon nanotubes: molecular dynamics simulations and analytical modeling, J. Appl. Phys., 114, 10.1063/1.4842896
Chalopin, 2009, Upper bound to the thermal conductivity of carbon nanotube pellets, J. Appl. Phys., 105, 10.1063/1.3088924
Paul, 2019, Mechanochemistry of stable diamane and atomically thin diamond films synthesis from Bi-and multilayer graphene: a computational study, J. Phys. Chem. C, 123, 15751, 10.1021/acs.jpcc.9b02149
Muniz, 2015, Mechanical behavior of interlayer-bonded nanostructures obtained from bilayer graphene, Carbon, 81, 663, 10.1016/j.carbon.2014.10.003
Muniz, 2015, Carbon-based nanostructures derived from bilayer graphene with zero thermal expansion behavior, J. Phys. Chem. C, 119, 17458, 10.1021/acs.jpcc.5b05602
Kvashnin, 2014, Lonsdaleite films with nanometer thickness, J. Phys. Chem. Lett., 5, 541, 10.1021/jz402528q
Zheng, 2020, Single layer diamond - a new ultrathin 2D carbon nanostructure for mechanical resonator, Carbon, 161, 809, 10.1016/j.carbon.2020.02.017
Evans, 2012, Inter-tube thermal conductance in carbon nanotubes arrays and bundles: effects of contact area and pressure, Appl. Phys. Lett., 100, 10.1063/1.4732100
Feng, 2018, Quantitative study of bundle size effect on thermal conductivity of single-walled carbon nanotubes, Appl. Phys. Lett., 112, 10.1063/1.5021696
Dickey, 1969, Computer simulation of the lattice dynamics of solids, Phys. Rev., 188, 1407, 10.1103/PhysRev.188.1407
Li, 2005, Interface thermal resistance between dissimilar anharmonic lattices, Phys. Rev. Lett., 95, 10.1103/PhysRevLett.95.104302
Pereira, 2013, Divergence of the thermal conductivity in uniaxially strained graphene, Phys. Rev. B, 87, 10.1103/PhysRevB.87.125424
Zhong, 2006, Interfacial thermal resistance between carbon nanotubes: molecular dynamics simulations and analytical thermal modeling, Phys. Rev. B, 74, 10.1103/PhysRevB.74.125403
Hu, 2014, Thermal conductance of the junction between single-walled carbon nanotubes, Appl. Phys. Lett., 105, 193104, 10.1063/1.4902074
Silveira, 2017, Functionalized diamond nanothreads from benzene derivatives, Phys. Chem. Chem. Phys., 19, 7132, 10.1039/C6CP08655A
Nobrega, 2018, One-dimensional diamondoid polyaniline-like nanothreads from compressed crystal aniline, Chem. Sci., 9, 254, 10.1039/C7SC03445H
Varshney, 2010, Modeling of thermal conductance at transverse CNT−CNT interfaces, J. Phys. Chem. C, 114, 16223, 10.1021/jp104139x
Barrejón, 2019, Chemically cross-linked carbon nanotube films engineered to control neuronal signaling, ACS Nano, 13, 8879, 10.1021/acsnano.9b02429
Park, 2017, High-modulus and strength carbon nanotube fibers using molecular cross-linking, Carbon, 118, 413, 10.1016/j.carbon.2017.03.079
Yang, 2019, The effect of thermal contact number on the tube–tube contact conductance of single-walled carbon nanotubes, Nanomaterials, 9, 10.3390/nano9030477
Prasher, 2009, Turning carbon nanotubes from exceptional heat conductors into insulators, Phys. Rev. Lett., 102, 10.1103/PhysRevLett.102.105901
Landry, 2009, Thermal boundary resistance predictions from molecular dynamics simulations and theoretical calculations, Phys. Rev. B, 80, 10.1103/PhysRevB.80.165304
Stevens, 2007, Effects of temperature and disorder on thermal boundary conductance at solid–solid interfaces: nonequilibrium molecular dynamics simulations, Int. J. Heat Mass Tran., 50, 3977, 10.1016/j.ijheatmasstransfer.2007.01.040
Chen, 2012, Thermal contact resistance across nanoscale silicon dioxide and silicon interface, J. Appl. Phys., 112, 10.1063/1.4754513
Hopkins, 2009, Relative contributions of inelastic and elastic diffuse phonon scattering to thermal boundary conductance across solid interfaces, J. Heat Tran., 131
Lyeo, 2006, Thermal conductance of interfaces between highly dissimilar materials, Phys. Rev. B, 73, 144301, 10.1103/PhysRevB.73.144301
Costescu, 2003, Thermal conductance of epitaxial interfaces, Phys. Rev. B, 67, 10.1103/PhysRevB.67.054302