Low interfacial thermal resistance between crossed ultra-thin carbon nanothreads

Carbon - Tập 165 - Trang 216-224 - 2020
Haifei Zhan1,2, Gang Zhang3, Xiaoying Zhuang4, Rabczuk Timon5, Yuantong Gu1,2
1School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD, 4001, Australia
2Center for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD, 4001, Australia
3Institute of High Performance Computing, Agency for Science, Technology and Research, 1 Fusionopolis Way, Singapore 138632, Singapore
4Institute of Continuum Mechanics, Leibniz Universität Hannover, Appelstraße 11, 30157 Hannover, Germany
5Institute of Structural Mech. Bauhaus-Universität Weimar, Marienstraße 15, 99423, Weimar, Germany

Tài liệu tham khảo

Wang, 2017, Graphene integrated photodetectors and opto-electronic devices—a review, Chin. Phys. B, 26, 10.1088/1674-1056/26/3/034203 Chen, 2019, Construction of 3D boron nitride nanosheets/silver networks in epoxy-based composites with high thermal conductivity via in-situ sintering of silver nanoparticles, Chem. Eng. J., 369, 1150, 10.1016/j.cej.2019.03.150 Hoogeboom-Pot, 2015, A new regime of nanoscale thermal transport: collective diffusion increases dissipation efficiency, Proc. Natl. Acad. Sci. U.S.A., 112, 4846, 10.1073/pnas.1503449112 Chen, 2017, Diffusion behavior and mechanical properties of Cu/Ni coating on TC4 alloy, Vacuum, 143, 150, 10.1016/j.vacuum.2017.06.004 Moore, 2014, Emerging challenges and materials for thermal management of electronics, Mater. Today, 17, 163, 10.1016/j.mattod.2014.04.003 Huang, 2012, Role of interface on the thermal conductivity of highly filled dielectric epoxy/AlN composites, J. Phys. Chem. C, 116, 13629, 10.1021/jp3026545 Zhan, 2020, Thermal transport in 3D nanostructures, Adv. Funct. Mater., 30, 10.1002/adfm.201903841 Zhan, 2018, Thermal conduction of one-dimensional carbon nanomaterials and nanoarchitectures, Chin. Phys. B, 27, 10.1088/1674-1056/27/3/038103 H.M. Duong, F. Gong, P. Liu, T.Q. Tran, Advanced fabrication and properties of aligned carbon nanotube composites: experiments and modeling, in: M. Berber (Ed.), Carbon Nanotubes—Current Progress of Their Polymer Composites 2016. Tran, 2020, High-performance carbon fiber/gold/copper composite wires for lightweight electrical cables, J. Mater. Sci. Technol., 42, 46, 10.1016/j.jmst.2019.08.057 Kim, 2001, Thermal transport measurements of individual multiwalled nanotubes, Phys. Rev. Lett., 87, 10.1103/PhysRevLett.87.215502 Pop, 2006, Thermal conductance of an individual single-wall carbon nanotube above room temperature, Nano Lett., 6, 96, 10.1021/nl052145f Kumar, 2007, Effect of percolation on thermal transport in nanotube composites, Appl. Phys. Lett., 90, 10.1063/1.2712428 Xu, 2018, Thermal conductive composites reinforced via advanced boron nitride nanomaterials, Compos. Commun., 10, 103, 10.1016/j.coco.2018.08.002 Huxtable, 2003, Interfacial heat flow in carbon nanotube suspensions, Nat. Mater., 2, 731, 10.1038/nmat996 Varshney, 2018, Effect of length, diameter, chirality, deformation, and strain on contact thermal conductance between single-wall carbon nanotubes, Front. Mater., 5 Liao, 2017, Tuning thermal conductance of CNT interface junction via stretching and atomic bonding, J. Phys. D Appl. Phys., 50, 10.1088/1361-6463/aa8ff8 Lee, 2017, Divergent and ultrahigh thermal conductivity in millimeter-long nanotubes, Phys. Rev. Lett., 118, 10.1103/PhysRevLett.118.135901 Ni, 2015, Nanoscale Azide polymer functionalization: a robust solution for suppressing the carbon nanotube–polymer matrix thermal interface resistance, J. Phys. Chem. C, 119, 12193, 10.1021/acs.jpcc.5b02551 Wang, 2014, Introducing thermally stable inter-tube defects to assist off-axial phonon transport in carbon nanotube films, Appl. Phys. Lett., 104, 10.1063/1.4874624 Aitkaliyeva, 2013, Phonon transport assisted by inter-tube carbon displacements in carbon nanotube mats, Sci. Rep., 3, 2774, 10.1038/srep02774 Prasher, 2008, Thermal boundary resistance and thermal conductivity of multiwalled carbon nanotubes, Phys. Rev. B, 77, 10.1103/PhysRevB.77.075424 Fitzgibbons, 2015, Benzene-derived carbon nanothreads, Nat. Mater., 14, 43, 10.1038/nmat4088 Duan, 2018, The chemical structure of carbon nanothreads analyzed by advanced solid-state NMR, J. Appl. Comput. Sci., 140, 7658 Demingos, 2018, Carbon nanothreads from polycyclic aromatic hydrocarbon molecules, Carbon, 140, 644, 10.1016/j.carbon.2018.09.022 Mathijsen, 2016, Beyond carbon fiber: what will be the fibers of choice for future composites?, Reinforc Plast, 60, 38, 10.1016/j.repl.2015.12.003 Zhan, 2017, The best features of diamond nanothread for nanofibre applications, Nat. Commun., 8, 14863, 10.1038/ncomms14863 Zhan, 2016, Diamond nanothread as a new reinforcement for nanocomposites, Adv. Funct. Mater., 26, 5279, 10.1002/adfm.201600119 Zhan, 2016, Thermal conductivity of a new carbon nanotube analog: the diamond nanothread, Carbon, 98, 232, 10.1016/j.carbon.2015.11.012 Varshney, 2017, Understanding thermal conductance across multi-wall carbon nanotube contacts: role of nanotube curvature, Carbon, 114, 15, 10.1016/j.carbon.2016.11.056 Evans, 2010, Thermal conductivity of carbon nanotube cross-bar structures, Nanotechnology, 21, 10.1088/0957-4484/21/47/475704 Yang, 2010, Contact thermal resistance between individual multiwall carbon nanotubes, Appl. Phys. Lett., 96, 10.1063/1.3292203 Yang, 2014, Phonon transport through point contacts between graphitic nanomaterials, Phys. Rev. Lett., 112, 10.1103/PhysRevLett.112.205901 Hoover, 1985, Canonical dynamics: equilibrium phase-space distributions, Phys. Rev., 31, 1695, 10.1103/PhysRevA.31.1695 Nosé, 1984, A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys., 81, 511, 10.1063/1.447334 Schneider, 1978, Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions, Phys. Rev. B, 17, 1302, 10.1103/PhysRevB.17.1302 Plimpton, 1995, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys., 117, 1, 10.1006/jcph.1995.1039 Brenner, 2002, A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons, J. Phys. Condens. Matter, 14, 783, 10.1088/0953-8984/14/4/312 Stuart, 2000, A reactive potential for hydrocarbons with intermolecular interactions, J. Chem. Phys., 112, 6472, 10.1063/1.481208 Zhang, 2015, Stiffness-dependent interlayer friction of graphene, Carbon, 94, 60, 10.1016/j.carbon.2015.06.024 Xia, 2007, Enhancing mechanical properties of multiwall carbon nanotubes via sp3 interwall bridging, Phys. Rev. Lett., 98, 10.1103/PhysRevLett.98.245501 Ni, 2001, Tribological properties of carbon nanotube bundles predicted from atomistic simulations, Surf. Sci., 487, 87, 10.1016/S0039-6028(01)01073-1 Barzegar, 2015, C60/Collapsed carbon nanotube hybrids: a variant of peapods, Nano Lett., 15, 829, 10.1021/nl503388f Xu, 2015, Systematic enumeration of sp3 nanothreads, Nano Lett., 15, 5124, 10.1021/acs.nanolett.5b01343 Hu, 2013, Thermal resistance between crossed carbon nanotubes: molecular dynamics simulations and analytical modeling, J. Appl. Phys., 114, 10.1063/1.4842896 Chalopin, 2009, Upper bound to the thermal conductivity of carbon nanotube pellets, J. Appl. Phys., 105, 10.1063/1.3088924 Paul, 2019, Mechanochemistry of stable diamane and atomically thin diamond films synthesis from Bi-and multilayer graphene: a computational study, J. Phys. Chem. C, 123, 15751, 10.1021/acs.jpcc.9b02149 Muniz, 2015, Mechanical behavior of interlayer-bonded nanostructures obtained from bilayer graphene, Carbon, 81, 663, 10.1016/j.carbon.2014.10.003 Muniz, 2015, Carbon-based nanostructures derived from bilayer graphene with zero thermal expansion behavior, J. Phys. Chem. C, 119, 17458, 10.1021/acs.jpcc.5b05602 Kvashnin, 2014, Lonsdaleite films with nanometer thickness, J. Phys. Chem. Lett., 5, 541, 10.1021/jz402528q Zheng, 2020, Single layer diamond - a new ultrathin 2D carbon nanostructure for mechanical resonator, Carbon, 161, 809, 10.1016/j.carbon.2020.02.017 Evans, 2012, Inter-tube thermal conductance in carbon nanotubes arrays and bundles: effects of contact area and pressure, Appl. Phys. Lett., 100, 10.1063/1.4732100 Feng, 2018, Quantitative study of bundle size effect on thermal conductivity of single-walled carbon nanotubes, Appl. Phys. Lett., 112, 10.1063/1.5021696 Dickey, 1969, Computer simulation of the lattice dynamics of solids, Phys. Rev., 188, 1407, 10.1103/PhysRev.188.1407 Li, 2005, Interface thermal resistance between dissimilar anharmonic lattices, Phys. Rev. Lett., 95, 10.1103/PhysRevLett.95.104302 Pereira, 2013, Divergence of the thermal conductivity in uniaxially strained graphene, Phys. Rev. B, 87, 10.1103/PhysRevB.87.125424 Zhong, 2006, Interfacial thermal resistance between carbon nanotubes: molecular dynamics simulations and analytical thermal modeling, Phys. Rev. B, 74, 10.1103/PhysRevB.74.125403 Hu, 2014, Thermal conductance of the junction between single-walled carbon nanotubes, Appl. Phys. Lett., 105, 193104, 10.1063/1.4902074 Silveira, 2017, Functionalized diamond nanothreads from benzene derivatives, Phys. Chem. Chem. Phys., 19, 7132, 10.1039/C6CP08655A Nobrega, 2018, One-dimensional diamondoid polyaniline-like nanothreads from compressed crystal aniline, Chem. Sci., 9, 254, 10.1039/C7SC03445H Varshney, 2010, Modeling of thermal conductance at transverse CNT−CNT interfaces, J. Phys. Chem. C, 114, 16223, 10.1021/jp104139x Barrejón, 2019, Chemically cross-linked carbon nanotube films engineered to control neuronal signaling, ACS Nano, 13, 8879, 10.1021/acsnano.9b02429 Park, 2017, High-modulus and strength carbon nanotube fibers using molecular cross-linking, Carbon, 118, 413, 10.1016/j.carbon.2017.03.079 Yang, 2019, The effect of thermal contact number on the tube–tube contact conductance of single-walled carbon nanotubes, Nanomaterials, 9, 10.3390/nano9030477 Prasher, 2009, Turning carbon nanotubes from exceptional heat conductors into insulators, Phys. Rev. Lett., 102, 10.1103/PhysRevLett.102.105901 Landry, 2009, Thermal boundary resistance predictions from molecular dynamics simulations and theoretical calculations, Phys. Rev. B, 80, 10.1103/PhysRevB.80.165304 Stevens, 2007, Effects of temperature and disorder on thermal boundary conductance at solid–solid interfaces: nonequilibrium molecular dynamics simulations, Int. J. Heat Mass Tran., 50, 3977, 10.1016/j.ijheatmasstransfer.2007.01.040 Chen, 2012, Thermal contact resistance across nanoscale silicon dioxide and silicon interface, J. Appl. Phys., 112, 10.1063/1.4754513 Hopkins, 2009, Relative contributions of inelastic and elastic diffuse phonon scattering to thermal boundary conductance across solid interfaces, J. Heat Tran., 131 Lyeo, 2006, Thermal conductance of interfaces between highly dissimilar materials, Phys. Rev. B, 73, 144301, 10.1103/PhysRevB.73.144301 Costescu, 2003, Thermal conductance of epitaxial interfaces, Phys. Rev. B, 67, 10.1103/PhysRevB.67.054302