Biến động mức nước biển tần số thấp và tác động của sự suy giảm băng biển gần đây đối với xu hướng mức nước biển ở Bắc Băng Dương từ một mô phỏng độ phân giải cao

Springer Science and Business Media LLC - Tập 70 - Trang 787-802 - 2020
Kai Xiao1, Meixiang Chen1, Qiang Wang2, Xuezhu Wang1,2, Wenhao Zhang1,2
1College of Oceanography, Hohai University, Nanjing, China
2Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany

Tóm tắt

Đại dương Arctic đang trải qua những thay đổi đáng kể, với sự suy giảm băng biển nhanh chóng, sự tích tụ nước ngọt chưa từng có và sự gia tăng mức nước biển khu vực rõ rệt. Trong bài báo này, chúng tôi phân tích sự biến động mức nước biển ở Bắc Băng Dương dựa trên một mô phỏng toàn cầu với độ phân giải 4.5 km trong Đại dương Arctic, sử dụng Mô Hình Băng Biển-Ocean Phân Tử Độ Phân Giải Đa Lớp (FESOM). Mô phỏng này tái tạo hợp lý cả các đặc trưng không gian chính của chiều cao bề mặt biển (SSH) và sự tiến triển theo thời gian của nó trong Bắc Băng Dương, so với dữ liệu từ hệ thống đo thủy triều và vệ tinh. Sử dụng kết quả mô hình, chúng tôi đã điều tra sự biến động tần số thấp của SSH ở Bắc Băng Dương. Cả hai chế độ chính của sự tiến triển SSH trung bình hàng năm ở Bắc Băng Dương đều cho thấy sự biến đổi theo thập kỷ và chủ yếu có thể quy cho sự biến động của chiều cao halosteric, do đó là nội dung nước ngọt. Chế độ đầu tiên có thể được giải thích bởi Dao động Bắc Băng Dương (AO). Sự tuần hoàn khí quyển liên quan đến AO thúc đẩy sự tích tụ và giải phóng nước ngọt trong bồn trũng sâu Arctic và sự thay đổi khối lượng đại dương tiếp theo trên thềm lục địa, dẫn đến sự thay đổi ngược pha của SSH giữa các biển thềm và bồn trũng sâu. Chế độ thứ hai cho thấy sự dao động ngược pha giữa hai bồn trũng sâu Arctic, bồn trũng Amerasian và bồn trũng Eurasian, điều này được thúc đẩy bởi dị thường lưỡng cực Arctic (DA). Dị thường gió liên quan đến DA gây ra sự phân bố lại không gian của nước ngọt giữa hai bồn trũng, dẫn đến sự thay đổi SSH ngược pha. Bằng cách sử dụng một mô phỏng độ nhạy chuyên dụng trong đó sự suy giảm băng biển gần đây bị loại bỏ, chúng tôi thấy rằng sự suy giảm băng biển đã đóng góp đáng kể vào sự gia tăng mức nước biển quan sát được ở Bồn trũng Amerasian trong những thập kỷ gần đây. Mặc dù sự suy giảm băng biển không thay đổi SSH trung bình trên toàn Bắc Băng Dương, nhưng nó đã thay đổi đáng kể mô hình không gian của xu hướng SSH. Kết quả phát hiện của chúng tôi cho thấy cả chế độ gió và sự suy giảm băng biển đang diễn ra cần được xem xét để hiểu và dự đoán tốt hơn những thay đổi trong mức nước biển khu vực ở Bắc Băng Dương.

Từ khóa

#Bắc Băng Dương #mức nước biển #suy giảm băng biển #dao động Bắc Băng Dương #mô phỏng độ phân giải cao

Tài liệu tham khảo

Andersen O, Knudsen P, Stenseng L (2015) The DTU13 MSS (Mean Sea Surface) and MDT (Mean Dynamic Topography) from 20 Years of Satellite Altimetry. In: Jin S, Barzaghi R (eds) IGFS 2014. International Association of Geodesy Symposia, vol 144. Springer, Cham Armitage T, Bacon S, Kwok R (2018) Arctic sea level and surface circulation response to the Arctic oscillation. Geophys Res Lett 45:6576–6584. https://doi.org/10.1029/2018GL078386 Armitage T, Bacon S, Ridout A, Petty A, Wolbach S, Tsamados M (2017) Arctic Ocean surface geostrophic circulation 2003-2014. Cryosphere 11(4):1767–1780. https://doi.org/10.5194/tc-11-1767-2017 Armitage T, Bacon S, Ridout A, Thomas S, Aksenov Y, Wingham D (2016) Arctic sea surface height variability and change from satellite radar altimetry and GRACE, 2003-2014. J Geophys Res Oceans 121:4303–4322. https://doi.org/10.1002/2015JC011579 Bindoff N, Willebrand J, Artale V et al (2007) Observations: Oceanic climate change and sea level. Climate Change 2007: The Physical Science Basis. S. Solomon et al. Eds, Cambridge University Press, 386–432 Calafat F, Chambers D, Tsimplis M (2013) Inter-annual to decadal sea-level variability in the coastal zones of the Norwegian and Siberian seas: the role of atmospheric forcing. J Geophys Res Oceans 118:1287–1301. https://doi.org/10.1002/jgrc.20106 Carret A, Johannessen J, Andersen O, Ablain M, Prandi P, Blazquez A et al (2017) Arctic sea level during the satellite altimetry era. Surv Geophys 38(1):251–275 Cazenave A, Llovel W (2010) Contemporary sea level rise. Annu Rev Mar Sci 2:145–173 Cheng Y, Andersen O, Knudsen P (2015) An improved 20-year arctic ocean altimetric sea level data record. Mar Geod 38:146–162 Church J, Clark P, Cazenave A et al (2013) Sea level change. In: Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge and New York, pp 1137–1216 Danilov S, Wang Q, Timmermann R, Iakovlev N, Sidorenko D, Kimmritz M, Jung T, Schröter J (2015) Finite-element sea ice model (FESIM), version 2. Geosci Model Dev 8:1747–1761 Dmitrenko I, Kirillov S, Tremblay L (2008) The long-term and interannual variability of summer fresh water storage over the eastern Siberian shelf: implication for climatic change. J Geophys Res 113:C03007. https://doi.org/10.1029/2007JC004304 Fukumori I, Wang O, Llovel W, Fenty I, Forget G (2015) A near-uniform fluctuation of ocean bottom pressure and sea level across the deep ocean basins of the Arctic Ocean and the Nordic seas. Prog Oceanogr 134:152–172 Giles K, Laxon S, Ridout A, Wingham D, Bacon S (2012) Western Arctic Ocean freshwater storage increased by wind-driven spin-up of the Beaufort Gyre. Nat Geosci 5:194–197. https://doi.org/10.1038/ngeo1379 Good S, Martin M, Rayner N (2013) EN4: quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J Geophys Res Oceans 118(12):6704–6716. https://doi.org/10.1002/2013JC009067 Griffies S, Yin J, Durack P et al (2014) An assessment of global and regional sea level for years 1993–2007 in a suite of interannual CORE-II simulations. Ocean Model 78:35–89 Henry O, Prandi P, Llovel W, Cazenave A, Jevrejeva S, Stammer D, Meyssignac B, Koldunov N (2012) Tide gauge-based sea level variations since 1950 along the Norwegian and Russian coasts of the Arctic Ocean: contribution of the steric and mass components. J Geophys Res 117:C06023. https://doi.org/10.1029/2011JC007706 Holgate S, Matthews A, Woodworth P et al (2013) New data systems and products at the permanent service for mean sea level. J Coast Res 29(3):493–504. https://doi.org/10.2112/JCOASTRES-D-12-00175.1 Ikeda M (1990) Decadal oscillation of the air-ice-sea system in the northern hemisphere. Atmos Ocean 28:106–139 Ikeda M, Wang J, Zhao JP (2001) Hypersensitive decadal oscillations in the Arctic/subarctic climate. Geophys Res Lett 28(7):1275–1278 Jakobsson M, Macnab R, Mayer L et al (2008) An improved bathymetric portrayal of the Arctic Ocean: implications for ocean modeling and geological, geophysical and oceanographic analyses. Geophys Res Lett 35:L07602. https://doi.org/10.1029/2008GL033520 Johannessen J, Raj R, Nilsen J et al (2014) Toward improved estimation of the dynamic topography and ocean circulation in the high latitude and Arctic Ocean: the importance of GOCE. Surv Geophys 35(3):1–19 Kobayashi S, Ota Y, Harada Y et al (2015) The JRA-55 reanalysis: general specifications and basic characteristics. J Meteorol Soc Jpn Ser II 93(1):5–48. https://doi.org/10.2151/jmsj.2015-001 Köhl A, Serra N (2014) Causes of decadal changes of the freshwater content in the Arctic Ocean. J Clim 27:3461–3475. https://doi.org/10.1175/JCLI-D-13-00.389.1 Koldunov N, Serra N, Köhl A et al (2014) Multimodel simulations of Arctic Ocean sea surface height variability in the period 1970–2009. J Geophys Res Oceans 119(12):8936–8954. https://doi.org/10.1002/2014JC010170 Kwok R, Cunningham G, Wensnahan M et al (2009) Thinning and volume loss of the Arctic Ocean sea ice cover: 2003–2008. J Geophys Res 114:C07005. https://doi.org/10.1029/2009JC005312 Laxon S (1994) Sea ice altimeter processing scheme at the EODC. Int J Remote Sens 15:915–924. https://doi.org/10.1080/01431169408954124 Laxon S, Giles K, Ridout A et al (2013) CryoSat-2 estimates of Arctic sea ice thickness and volume. Geophys Res Lett 40(4):732–737. https://doi.org/10.1002/grl.50193 Lei R, Heil P, Wang J, Zhang Z, Li Q, Li N (2016) Characterization of sea-ice kinematic in the Arctic outflow region using buoy data. Polar Res 35:22658 Lei R, Leppäranta M, Wang J et al (2015) Changes in sea ice along the Arctic northeast passage since 1979: results from remote sensing data. Cold Reg Sci Technol 119:132–144 Long Z, Perrie W, Tang CL, Dunlap E, Wang J (2012) Simulated interannual variations of freshwater content and sea surface height in the Beaufort Sea. J Clim 25(4):1079–1095. https://doi.org/10.1175/2011JCI14121.1 Martin T, Steele M, Zhang J (2014) Seasonality and long term trend of Arctic Ocean surface stress in a model. J Geophys Res Oceans 119:1723–1738. https://doi.org/10.1002/2013JC009425 McPhee M, Proshutinsky A, Morison J, Steele M, Alkire M (2009) Rapid change in freshwater content of the Arctic Ocean. Geophys Res Lett 36:L10602. https://doi.org/10.1029/2009GL037525 Meyssignac B, Slangen A, Melet A et al (2017) Evaluating model simulations of twentieth-century sea-level rise. Part II: regional sea-level changes. J Clim 30(21):8565–8593 Morison J, Kwok R, Peralta-Ferriz C, Alkire M, Steele M (2012) Changing arctic ocean freshwater pathways. Nature 481(7379):66–70 Müller F, Wekerle C, Dettmering D, Passaro M, Bosch W, Seitz F (2019) Dynamic ocean topography of the northern Nordic seas: a comparison between satellite altimetry and ocean modeling. Cryosphere 13:611–626 Peacock N, Laxon S (2004) Sea surface height determination in the Arctic Ocean from ERS altimetry. J Geophys Res Oceans 109:C07001. https://doi.org/10.1029/2001JC001026 Peltier W, Argus D, Drummond R (2015) Space geodesy constrains ice age terminal deglaciation: the global ice-6g_c (vm5a) model. J Geophys Res Solid Earth 120(1):450–487 Polyakov I, Bhatt U, Walsh J, Abrahamsen E, Pnyushkov A, Wassmann P (2013) Recent oceanic changes in the Arctic in the context of long-term observations. Ecol Appl 23(8):1745–1764. https://doi.org/10.1890/11-0902.1 Prandi P, Ablain M, Cazenave A, Picot N (2012a) Sea level variability in the Arctic Ocean observed by satellite altimetry. Ocean Sci Discuss 9(4):2375–2401. https://doi.org/10.5194/osd-9-2375-2012 Prandi P, Ablain M, Cazenave A, Picot N (2012b) A new estimation of mean sea level in the Arctic Ocean from satellite altimetry. Mar Geod 35(sup1):61–81. https://doi.org/10.1080/01490419.2012.718222 Proshutinsky A, Ashik I, Dvorkin E, Häkkinen S, Krishfield R, Peltier W (2004) Secular sea level change in the Russian sector of the Arctic Ocean. J Geophys Res Oceans 109:C03042. https://doi.org/10.1029/2003JC002007 Proshutinsky A, Ashik I, Häkkinen S et al (2007) Sea level variability in the Arctic Ocean from AOMIP models. J Geophys Res Oceans 112:C04S08. https://doi.org/10.1029/2006JC003916 Proshutinsky A, Bourke R, Mclaughlin F (2002) The role of the Beaufort Gyre in Arctic climate variability: seasonal to decadal climate scales. Geophys Res Lett 29(23):2100 Proshutinsky A, Dukhovskoy D, Timmermans ML, Krishfield R, Bamber JL (2015) Arctic circulation regimes. Phil Trans R Soc A 373:20140160. https://doi.org/10.1098/rsta.2014.0160 Proshutinsky A, Johnson M (1997) Two circulation regimes of the wind-driven Arctic Ocean. J Geophys Res 102(C6):12493–12514 Proshutinsky A, Krishfield R, Timermans M et al (2009) Beaufort Gyre freshwater reservoir: state and variability from observations. J Geophys Res Oceans 114:C00A10. https://doi.org/10.1029/2008JC005104 Proshutinsky A, Kowalik Z (2007) Preface to special section on Arctic Ocean model intercomparison project (AOMIP) studies and results. J Geophys Res 112:C04S01. https://doi.org/10.1029/2006JC004017 Rabe B, Karcher M, Kauker F, Schauer U, Toole JM, Krishfield RA, Pisarev S, Kikuchi T, Su J (2014) Arctic Ocean basin liquid freshwater storage trend 1992–2012. Geophys Res Lett 41(3):961–968. https://doi.org/10.1002/2013GL058121 Regan H, Lique C, Armitage T (2019) The Beaufort Gyre extent, shape, and location between 2003 and 2014 from satellite observations. J Geophys Res Oceans 124:844–862. https://doi.org/10.1029/2018JC014379 Rose S, Andersen O, Passaro M, Ludwigsen C, Schwatke C (2019) Arctic Ocean sea level record from the complete radar altimetry era: 1991-2018. Remote Sens 11(14). https://doi.org/10.3390/rs11141672 Serreze M, Barrett A, Stroeve J, Kindig D, Holland M (2009) The emergence of surface-based Arctic amplification. Cryosphere 3(1):11–19. https://doi.org/10.5194/tc-3-11-2009 Slangen A, Meyssignac B, Agosta C et al (2017) Evaluating model simulations of twentieth-century sea level rise. Part I: global mean sea level change. J Clim 30(21):8539–8563 Stammer D, Cazenave A, Ponte R, Tamisiea M (2013) Causes for contemporary regional sea level changes. Annu Rev Mar Sci 5:21–46. https://doi.org/10.1146/annurev-marine-121211-172406 Stroeve J, Kattsov V, Barrett A, Serreze M, Pavlova T, Holland M, Meier W (2012) Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys Res Lett 39(16). https://doi.org/10.1029/2012GL052676 Svendsen P, Andersen O, Nielsen A (2016) Stable reconstruction of Arctic sea level for the 1950–2010 period. J Geophys Res Oceans 121(8):5697–5710. https://doi.org/10.1002/2016JC011685 Thompson D, Wallace J (1998) The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25(9):1297–1300. https://doi.org/10.1029/98GL00950 Volkov D, Landerer F (2013) Nonseasonal fluctuations of the Arctic Ocean mass observed by the GRACE satellites. J Geophys Res 118:6451–6460. https://doi.org/10.1002/2013JC009341 Wang J, Ikeda M (2000) Arctic Oscillation and Arctic Sea-Ice Oscillation. Geophys Res Lett 27(9):1287–1290 Wang J, Ikeda M (2001) Arctic Sea-Ice Oscillation: regional and seasonal perspectives. Ann Glaciol 33:481–492 Wang J, Ikeda M, Zhang S, Gerdes R (2005) Linking the northern hemisphere sea-ice reduction trend and the quasi-decadal arctic sea-ice oscillation. Clim Dyn 24(2–3):115–130. https://doi.org/10.1007/s00382-004-0454-5 Wang J, Zhang J, Watanabe E, Mizobata K, Ikeda M et al (2009) Is the dipole anomaly a major driver to record lows in the Arctic sea ice extent? Geophys Res Lett 36:L05706. https://doi.org/10.1029/2008GL036706 Wang Q, Danilov S, Sidorenko D, Timmermann R, Wekerle C, Wang X, Jung T, Schroeter J (2014) The Finite Element Sea Ice-Ocean Model (FESOM) v.1.4: formulation of an ocean general circulation model. Geosci Model Dev 7:663–693 Wang Q, Ilicak M, Gerdes R, Drange H, Aksenov Y, Bailey DA, Bentsen M, Biastoch A, Bozec A, Böning C, Cassou C, Chassignet E, Coward AC, Curry B, Danabasoglu G, Danilov S, Fernandez E, Fogli PG, Fujii Y, Griffies SM, Iovino D, Jahn A, Jung T, Large WG, Lee C, Lique C, Lu J, Masina S, Nurser AJG, Rabe B, Roth C, Salas y Mélia D, Samuels BL, Spence P, Tsujino H, Valcke S, Voldoire A, Wang X, Yeager SG (2016a) An assessment of the Arctic Ocean in a suite of interannual CORE-II simulations. Part II: liquid freshwater. Ocean Model 99:86–109 Wang Q, Danilov S, Jung T, Kaleschke L, Wernecke A (2016b) Sea ice leads in the Arctic Ocean: model assessment, interannual variability and trends. Geophys Res Lett 43:7019–7027 Wang Q, Ilicak M, Gerdes R, Drange H, Aksenov Y, Bailey DA, Bentsen M, Biastoch A, Bozec A, Böning C, Cassou C, Chassignet E, Coward AC, Curry B, Danabasoglu G, Danilov S, Fernandez E, Fogli PG, Fujii Y, Griffies SM, Iovino D, Jahn A, Jung T, Large WG, Lee C, Lique C, Lu J, Masina S, Nurser AJG, Rabe B, Roth C, Salas y Mélia D, Samuels BL, Spence P, Tsujino H, Valcke S, Voldoire A, Wang X, Yeager SG (2016c) An assessment of the Arctic Ocean in a suite of interannual CORE-II simulations. Part I: sea ice and solid freshwater. Ocean Model 99:110–132 Wang Q, Wekerle C, Danilov S, Koldunov N, Sidorenko D, Sein D, Rabe B, Jung T (2018a) Arctic Sea ice decline significantly contributed to the unprecedented liquid freshwater accumulation in the Beaufort Gyre of the Arctic Ocean. Geophys Res Lett 45:4956–4964 Wang Q, Wekerle C, Danilov S, Wang X, Jung T (2018b) A 4.5 km resolution Arctic Ocean simulation with the global multi-resolution model FESOM 1.4. Geosci Model Dev 11:1229–1255 Wang Q, Wekerle C, Danilov S, Sidorenko D, Koldunov N, Sein D, Rabe B, Jung T (2019) Recent seaice decline did not significantly increase the total liquid freshwater content of the Arctic Ocean. J Clim 32:15–32 Wekerle C, Wang Q, Danilov S, Jung T, Schröter J (2013) The Canadian Arctic Archipelago throughflow in a multiresolution global model: model assessment and the driving mechanism of interannual variability. J Geophys Res Oceans 118(9):4525–4541. https://doi.org/10.1002/jgrc.20330 Wekerle C, Wang Q, von Appen V, Danilov S, Schourup-Kristensen V, Thomas J (2017a) Eddy-resolving simulation of the Atlantic water circulation in the Fram Strait with focus on the seasonal cycle. J Geophys Res Oceans 122:8385–8405 Wekerle C, Wang Q, Danilov S, Schourup-Kristensen V, von Appen V, Thomas J (2017b) Atlantic water in the Nordic seas: locally eddy-permitting ocean simulation in a global setup. J Geophys Res Oceans 122:914–940. https://doi.org/10.1002/2016JC012121 Woodgate R, Weingartner T, Lindsay R (2012) Observed increases in Bering Strait oceanic fluxes from the Pacific to the Arctic from 2001 to 2011 and their impacts on the Arctic Ocean water column. Geophys Res Lett 39:L24603. https://doi.org/10.1029/2012GL054092 Wu B, Wang J, Walsh J (2006) Dipole anomaly in the winter Arctic atmosphere and its association with Arctic sea ice motion. J Clim 19(2):210–225. https://doi.org/10.1175/JCLI3619.1 Yin J (2012) Century to multi-century sea-level rise projections from CMIP5 models. Geophys Res Lett 39:L17709. https://doi.org/10.1029/2012GL052947