Low efficacy of tobramycin in experimental Staphylococcus aureus endocarditis

C. J. Lerche1, L. J. Christophersen1, H. Trøstrup1, K. Thomsen1, P. Ø. Jensen1, H. P. Hougen2, H. Bundgaard3, N. Høiby1,4, C. Moser1
1Department of Clinical Microbiology 9301, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
2Department of Forensic Medicine, University of Copenhagen, Copenhagen, Denmark
3Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
4Institute of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark

Tóm tắt

The empiric treatment of infective endocarditis (IE) varies widely and, in some places, a regimen of penicillin in combination with an aminoglycoside is administered. The increasing incidence of Staphylococcus aureus IE, poor tissue penetration by aminoglycosides and low frequency of penicillin-susceptible S. aureus may potentially lead to functional tobramycin monotherapy. Therefore, this study aimed to evaluate tobramycin monotherapy in an experimental S. aureus IE rat model. Catheter-induced IE at the aortic valves were established with S. aureus (NCTC 8325-4) and rats were randomised into untreated (n = 22) or tobramycin-treated (n = 13) groups. The treatment group received tobramycin once-daily. Animals were evaluated at 1 day post infection (DPI), 2 DPI or 3 DPI. Quantitative bacteriology and cytokine expression were measured for valves, myocardium and serum. A decrease of bacterial load was observed in valves and the spleens of the treated (n = 6) compared to the untreated group at 2 DPI (n = 8) (p ≤ 0.02 and p ≤ 0.01, respectively), but not at 3 DPI (n = 7). Quantitative bacteriology in the myocardium was not different between the groups. Keratinocyte-derived chemokine (KC) in the aortic valves was significantly reduced at 2 DPI in the tobramycin-treated group (p ≤ 0.03). However, the expression of interleukin (IL)-1b, IL-6 and granulocyte-colony stimulating factor (G-CSF) in the valves was not different between the two groups. In the myocardium, a significant reduction in IL-1b was observed at 2 DPI (p ≤ 0.001) but not at 3 DPI. Tobramycin as functional monotherapy only reduced bacterial load and inflammation transiently, and was insufficient in most cases of S. aureus IE.

Tài liệu tham khảo

Miro JM, Anguera I, Cabell CH, Chen AY, Stafford JA, Corey GR et al (2005) Staphylococcus aureus native valve infective endocarditis: report of 566 episodes from the International Collaboration on Endocarditis Merged Database. Clin Infect Dis 41:507–514. doi:10.1086/431979 Veloso TR, Chaouch A, Roger T, Giddey M, Vouillamoz J, Majcherczyk P et al (2013) Use of a human-like low-grade bacteremia model of experimental endocarditis to study the role of Staphylococcus aureus adhesins and platelet aggregation in early endocarditis. Infect Immun 81:697–703. doi:10.1128/IAI.01030-12 Siboo IR, Cheung AL, Bayer AS, Sullam PM (2001) Clumping factor A mediates binding of Staphylococcus aureus to human platelets. Infect Immun 69:3120–3127. doi:10.1128/IAI.69.5.3120-3127.2001 Heying R, van de Gevel J, Que Y-A, Moreillon P, Beekhuizen H (2007) Fibronectin-binding proteins and clumping factor A in Staphylococcus aureus experimental endocarditis: FnBPA is sufficient to activate human endothelial cells. Thromb Haemost 97:617–626 Rawczyńska-Englert I, Hryniewiecki T, Dzierżanowska D (2000) Evaluation of serum cytokine concentrations in patients with infective endocarditis. J Heart Valve Dis 9:705–709 Tsaganos T, Pelekanou A, Skiadas I, Giamarellos-Bourboulis EJ (2013) Differences in cytokine stimulation between methicillin-susceptible and methicillin-resistant Staphylococcus aureus in an experimental endocarditis model. J Infect Chemother 19:272–278. doi:10.1007/s10156-012-0497-1 Mohler J, Fantin B, Mainardi JL, Carbon C (1994) Influence of antimicrobial therapy on kinetics of tumor necrosis factor levels in experimental endocarditis caused by Klebsiella pneumoniae. Antimicrob Agents Chemother 38:1017–1022. doi:10.1128/AAC.38.5.1017 Christiansen JG, Jensen HE, Jensen LK, Koch J, Aalbaek B, Nielsen OL et al (2014) Systemic inflammatory response and local cytokine expression in porcine models of endocarditis. APMIS 122:292–300. doi:10.1111/apm.12145 Yeh C-Y, Shun C-T, Kuo Y-M, Jung C-J, Hsieh S-C, Chiu Y-L et al (2015) Activated human valvular interstitial cells sustain interleukin-17 production to recruit neutrophils in infective endocarditis. Infect Immun 83:2202–2212. doi:10.1128/IAI.02965-14 Habib G, Hoen B, Tornos P, Thuny F, Prendergast B, Vilacosta I et al (2009) Guidelines on the prevention, diagnosis, and treatment of infective endocarditis (new version 2009): the task force on the prevention, diagnosis, and treatment of infective endocarditis of the European Society of Cardiology (ESC). Endorsed by the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and the International Society of Chemotherapy (ISC) for Infection and Cancer. Eur Heart J 30:2369–2413. doi:10.1093/eurheartj/ehp285 Gould FK, Denning DW, Elliott TSJ, Foweraker J, Perry JD, Prendergast BD et al (2012) Guidelines for the diagnosis and antibiotic treatment of endocarditis in adults: a report of the Working Party of the British Society for Antimicrobial Chemotherapy. J Antimicrob Chemother 67:269–289. doi:10.1093/jac/dkr450 Bruun NE, Egeblad H, Elming H, Fuursted K, Hassager C NHK (2014) NBV—Dansk Cardiologisk Selskab. 7. Infektiøs endocarditis. Available online at: http://nbv.cardio.dk/endocarditis#afs7_7 Westling K, Aufwerber E, Ekdahl C, Friman G, Gårdlund B, Julander I et al (2007) Swedish guidelines for diagnosis and treatment of infective endocarditis. Scand J Infect Dis 39:929–946. doi:10.1080/00365540701534517 DANMAP 2013 (2014) Available online at: http://www.danmap.org/∼/media/Projekt%20sites/Danmap/DANMAP%20reports/DANMAP%202013/DANMAP%202013.ashx Entenza JM, Vouillamoz J, Glauser MP, Moreillon P (1997) Levofloxacin versus ciprofloxacin, flucloxacillin, or vancomycin for treatment of experimental endocarditis due to methicillin-susceptible or -resistant Staphylococcus aureus. Antimicrob Agents Chemother 41:1662–1667 Moreillon P, Bizzini A, Giddey M, Vouillamoz J, Entenza JM (2012) Vancomycin-intermediate Staphylococcus aureus selected during vancomycin therapy of experimental endocarditis are not detected by culture-based diagnostic procedures and persist after treatment arrest. J Antimicrob Chemother 67:652–660. doi:10.1093/jac/dkr521 Dubé L, Caillon J, Jacqueline C, Bugnon D, Potel G, Asseray N (2012) The optimal aminoglycoside and its dosage for the treatment of severe Enterococcus faecalis infection. An experimental study in the rabbit endocarditis model. Eur J Clin Microbiol Infect Dis 31:2545–2547. doi:10.1007/s10096-012-1594-x Vanassche T, Kauskot A, Verhaegen J, Peetermans WE, van Ryn J, Schneewind O et al (2012) Fibrin formation by staphylothrombin facilitates Staphylococcus aureus-induced platelet aggregation. Thromb Haemost 107:1107–1121. doi:10.1160/TH11-12-0891 Loof TG, Goldmann O, Naudin C, Mörgelin M, Neumann Y, Pils MC et al (2014) Staphylococcus aureus-induced clotting of plasma is an immune evasion mechanism for persistence within the fibrin network. Microbiology 161:621–627. doi:10.1099/mic.0.000019 Kjerulf A, Espersen F, Gutschik E, Majcherczyk PA, Hougen HP, Rygaard J et al (1998) Serological diagnosis of experimental Enterococcus faecalis endocarditis. APMIS 106:997–1008 Miller MH, Wexler MA, Steigbigel NH (1978) Single and combination antibiotic therapy of Staphylococcus aureus experimental endocarditis: emergence of gentamicin-resistant mutants. Antimicrob Agents Chemother 14:336–343 Rodríguez A, Vicente MV, Olay T (1987) Single- and combination-antibiotic therapy for experimental endocarditis caused by methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 31:1444–1445 McGrath BJ, Kang SL, Kaatz GW, Rybak MJ (1994) Bactericidal activities of teicoplanin, vancomycin, and gentamicin alone and in combination against Staphylococcus aureus in an in vitro pharmacodynamic model of endocarditis. Antimicrob Agents Chemother 38:2034–2040 Tsaganos T, Skiadas I, Koutoukas P, Adamis T, Baxevanos N, Tzepi I et al (2008) Efficacy and pharmacodynamics of linezolid, alone and in combination with rifampicin, in an experimental model of methicillin-resistant Staphylococcus aureus endocarditis. J Antimicrob Chemother 62:381–383. doi:10.1093/jac/dkn180 Moreillon P, Que Y-A (2004) Infective endocarditis. Lancet 363:139–149. doi:10.1016/S0140-6736(03)15266-X Werdan K, Dietz S, Löffler B, Niemann S, Bushnaq H, Silber R-E et al (2014) Mechanisms of infective endocarditis: pathogen–host interaction and risk states. Nat Rev Cardiology 11:35–50. doi:10.1038/nrcardio.2013.174 Vanassche T, Verhaegen J, Peetermans WE, Van Ryn J, Cheng A, Schneewind O et al (2011) Inhibition of staphylothrombin by dabigatran reduces Staphylococcus aureus virulence. J Thromb Haemost 9:2436–2446. doi:10.1111/j.1538-7836.2011.04529.x