Low dust emissivities and radial variations in the envelopes of Class 0 protostars: possible signature of early grain growth

Astronomy and Astrophysics - Tập 632 - Trang A5 - 2019
M. Galametz1, A. Maury1,2, Valeska Valdivia1, L. Testi3,4, A. Belloche5, P. André1
1AIM, CEA, CNRS, Université Paris-Saclay, Université Paris Diderot, Sorbonne Paris Cité, 91191 Gif-sur-Yvette, France
2Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA
3ESO, Karl Schwarzschild Strasse 2, 85748 Garching bei München, Germany
4INAF, Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze, Italy
5Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany

Tóm tắt

Context. Analyzing the properties of dust and its evolution in the early phases of star formation is crucial to put constraints on the collapse and accretion processes as well as on the pristine properties of planet-forming seeds. Aims. In this paper, we aim to investigate the variations of the dust grain size in the envelopes of the youngest protostars. Methods. We analyzed Plateau de Bure interferometric observations at 1.3 and 3.2 mm for 12 Class 0 protostars obtained as part of the CALYPSO survey. We performed our analysis in the visibility domain and derived dust emissivity index (β1−3mm) profiles as a function of the envelope radius at 200–2000 au scales. Results. Most of the protostellar envelopes show low dust emissivity indices decreasing toward the central regions. The decreasing trend remains after correction of the (potentially optically thick) central region emission, with surprisingly low β1−3mm < 1 values across most of the envelope radii of NGC 1333-IRAS 4A, NGC 1333-IRAS 4B, SVS13B, and Serpens-SMM4. Conclusions. We discuss the various processes that could explain such low and varying dust emissivity indices at envelope radii 200–2000 au. Our observations of extremely low dust emissivity indices could trace the presence of large (millimeter-size) grains in Class 0 envelopes, in which case our results would point to a radial increase of the dust grain size toward the inner envelope regions. While it is expected that large grains in young protostellar envelopes could be built via grain growth and coagulation, we stress that the typical timescales required to build millimeter grains in current coagulation models are at odds with the youth of our Class 0 protostars. Additional variations in the dust composition could also partly contribute to the low β1−3mm we observe. We find that the steepness of the β1−3mm radial gradient depends strongly on the envelope mass, which might favor a scenario in which large grains are built in high-density protostellar disks and transported to the intermediate envelope radii, for example with the help of outflows and winds.

Từ khóa


Tài liệu tham khảo

Adams, 1991, ApJ, 382, 544, 10.1086/170741

Agurto-Gangas, 2019, A&A, 623, A147, 10.1051/0004-6361/201833666

Anderl, 2016, A&A, 591, A3, 10.1051/0004-6361/201527831

Andersen, 2013, A&A, 559, A60, 10.1051/0004-6361/201322102

André, 1996, ASP Conf. Ser., 93, 273

André, 1993, ApJ, 406, 122, 10.1086/172425

André P., Ward-Thompson D., & Barsony M. 2000, Protostars and Planets IV (Tucson: University of Arizona Press), 59

André, 2010, A&A, 518, L102, 10.1051/0004-6361/201014666

Anglada, 1996, ApJ, 473, L123, 10.1086/310408

Bate, 2017, MNRAS, 465, 1089, 10.1093/mnras/stw2853

Bazell, 1990, ApJ, 360, 142, 10.1086/169104

Beckwith, 1991, ApJ, 381, 250, 10.1086/170646

Beltrán, 2004, A&A, 416, 631, 10.1051/0004-6361:20034123

Bontemps, 1996, A&A, 311, 858

Bracco, 2017, A&A, 604, A52, 10.1051/0004-6361/201731117

Chacón-Tanarro, 2017, A&A, 606, A142, 10.1051/0004-6361/201630265

Chacón-Tanarro, 2019, A&A, 623, A118, 10.1051/0004-6361/201833385

Chen, 2016, ApJ, 826, 95, 10.3847/0004-637X/826/1/95

Chiang, 2010, ApJ, 709, 470, 10.1088/0004-637X/709/1/470

Chiang, 2012, ApJ, 756, 168, 10.1088/0004-637X/756/2/168

Chini, 1997, A&A, 325, 542

Coupeaud, 2011, A&A, 535, A124, 10.1051/0004-6361/201116945

Curiel, 1990, ApJ, 365, L85, 10.1086/185894

D’Alessio, 2001, ApJ, 553, 321, 10.1086/320655

Demyk, 1999, A&A, 349, 267

Demyk, 2017, A&A, 600, A123, 10.1051/0004-6361/201629711

Demyk, 2017, A&A, 606, A50, 10.1051/0004-6361/201730944

Draine, 2006, ApJ, 636, 1114, 10.1086/498130

Dupac, 2003, A&A, 404, L11, 10.1051/0004-6361:20030575

Eiroa, 2005, AJ, 130, 643, 10.1086/431742

Enoch, 2009, ApJ, 692, 973, 10.1088/0004-637X/692/2/973

Enoch, 2011, ApJS, 195, 21, 10.1088/0067-0049/195/2/21

Facchini, 2017, A&A, 605, A16, 10.1051/0004-6361/201630329

Froebrich, 2005, ApJS, 156, 169, 10.1086/426441

Fromang, 2006, A&A, 457, 371, 10.1051/0004-6361:20065371

Galván-Madrid, 2018, ApJ, 868, 39, 10.3847/1538-4357/aae779

Gaudel M., Maury A. J., Belloche A., et al. 2019, A&A, submitted

Gueth, 1997, A&A, 323, 943

Guillet, 2018, A&A, 610, A16, 10.1051/0004-6361/201630271

Harvey, 2003, ApJ, 596, 383, 10.1086/377581

Hsieh, 2017, AJ, 153, 173, 10.3847/1538-3881/aa5ff8

Jones, 2013, A&A, 558, A62, 10.1051/0004-6361/201321686

Jørgensen, 2007, ApJ, 659, 479, 10.1086/512230

Juvela, 2015, A&A, 584, A94, 10.1051/0004-6361/201425269

Kaas, 2004, A&A, 421, 623, 10.1051/0004-6361:20035775

Karska, 2013, A&A, 552, A141, 10.1051/0004-6361/201220028

Kataoka, 2014, A&A, 568, A42, 10.1051/0004-6361/201323199

Kern, 2016, AJ, 151, 42, 10.3847/0004-6256/151/2/42

Kessler-Silacci, 2005, ApJ, 622, 404, 10.1086/427793

Köhler, 2015, A&A, 579, A15, 10.1051/0004-6361/201525646

Kristensen, 2012, A&A, 542, A8, 10.1051/0004-6361/201118146

Kruegel, 1994, A&A, 288, 929

Kwon, 2009, ApJ, 696, 841, 10.1088/0004-637X/696/1/841

Kwon, 2015, ApJ, 814, 43, 10.1088/0004-637X/814/1/43

Lebreuilly, 2019, A&A, 626, A96, 10.1051/0004-6361/201834147

Lefèvre, 2014, A&A, 572, A20, 10.1051/0004-6361/201424081

Le Gouellec V. J. M., Hull C. L. H., Maury A. J., et al. 2019, ArXiv e-prints [arXiv:1909.00046]

Li, 2017, ApJ, 840, 72, 10.3847/1538-4357/aa6f04

Lugo, 2004, ApJ, 614, 807, 10.1086/423924

Martin, 2012, ApJ, 751, 28, 10.1088/0004-637X/751/1/28

Mason B., Dicker S., Sadavoy S., et al. 2019, ApJ, submitted [arXiv:1905.05221]

Masson, 2016, A&A, 587, A32, 10.1051/0004-6361/201526371

Mathis, 1977, ApJ, 217, 425, 10.1086/155591

Maury, 2011, A&A, 535, A77, 10.1051/0004-6361/201117132

Maury, 2018, MNRAS, 477, 2760, 10.1093/mnras/sty574

Maury, 2019, A&A, 621, A76, 10.1051/0004-6361/201833537

McMullin, 1994, ApJ, 424, 222, 10.1086/173885

Meehan, 1998, AJ, 115, 1599, 10.1086/300286

Melis, 2011, ApJ, 739, L7, 10.1088/2041-8205/739/1/L7

Miotello, 2014, A&A, 567, A32, 10.1051/0004-6361/201322945

Miyake, 1993, Icarus, 106, 20, 10.1006/icar.1993.1156

Motte, 2001, A&A, 365, 440, 10.1051/0004-6361:20000072

Motte, 1998, A&A, 336, 150

Natta A., Testi L., Calvet N., et al. 2007, in Protostars and Planets V, eds. Reipurth B., Jewitt D., & Keil K. (Tucson: University of Arizona Press), 767

Ormel, 2009, A&A, 502, 845, 10.1051/0004-6361/200811158

Ortiz-León, 2018, ApJ, 865, 73, 10.3847/1538-4357/aada49

Ortiz-León, 2018, ApJ, 869, L33, 10.3847/2041-8213/aaf6ad

Ossenkopf, 1993, A&A, 280, 617

Ossenkopf, 1994, A&A, 291, 943

Pagani, 2010, Science, 329, 1622, 10.1126/science.1193211

Pascucci, 2012, ApJ, 751, L42, 10.1088/2041-8205/751/2/L42

Pérez, 2012, ApJ, 760, L17, 10.1088/2041-8205/760/1/L17

Pérez, 2015, ApJ, 813, 41, 10.1088/0004-637X/813/1/41

Planck Collaboration XI, 2014, A&A, 571, A11, 10.1051/0004-6361/201323195

Plunkett, 2018, A&A, 615, A9, 10.1051/0004-6361/201732372

Poteet C. A. 2012, PhD Thesis, The University of Toledo, Toledo, USA

Rawlings, 2013, MNRAS, 430, 264, 10.1093/mnras/sts601

Reipurth, 2002, AJ, 124, 1045, 10.1086/341172

Reissl, 2016, A&A, 593, A87, 10.1051/0004-6361/201424930

Ricci, 2010, A&A, 521, A66, 10.1051/0004-6361/201015039

Robitaille, 2006, ApJS, 167, 256, 10.1086/508424

Rodríguez, 1997, ApJ, 480, L125, 10.1086/310636

Sadavoy, 2014, ApJ, 787, L18, 10.1088/2041-8205/787/2/L18

Sadavoy, 2016, A&A, 588, A30, 10.1051/0004-6361/201527364

Schnee, 2014, MNRAS, 444, 2303, 10.1093/mnras/stu1596

Steinacker, 2010, A&A, 511, A9, 10.1051/0004-6361/200912835

Steinacker, 2015, A&A, 582, A70, 10.1051/0004-6361/201425434

Tazzari, 2016, A&A, 588, A53, 10.1051/0004-6361/201527423

Terebey, 1993, ApJ, 414, 759, 10.1086/173121

Testi, 2001, ApJ, 554, 1087, 10.1086/321406

Testi, 2003, A&A, 403, 323, 10.1051/0004-6361:20030362

Testi L., Birnstiel T., Ricci L., et al. 2014, in Protostars and Planets VI, eds. Beuther H., Klessen R. S., Dullemond C. P., & Henning T. (Tucson: University of Arizona Press), 339

Teyssier, 2002, A&A, 385, 337, 10.1051/0004-6361:20011817

Tobin, 2013, ApJ, 771, 48, 10.1088/0004-637X/771/1/48

Tobin, 2015, ApJ, 798, 61, 10.1088/0004-637X/798/1/61

Tobin, 2016, ApJ, 818, 73, 10.3847/0004-637X/818/1/73

Torres, 2009, ApJ, 698, 242, 10.1088/0004-637X/698/1/242

Tychoniec, 2018, ApJ, 852, 18, 10.3847/1538-4357/aa9980

Tychoniec, 2018, ApJS, 238, 19, 10.3847/1538-4365/aaceae

Valdivia, 2019, MNRAS, 488, 4897, 10.1093/mnras/stz2056

Whitney, 2003, ApJ, 591, 1049, 10.1086/375415

Wong, 2016, PASJ, 68, 67, 10.1093/pasj/psw066

Ysard, 2019, A&A, 631, A88, 10.1051/0004-6361/201936089

Zucker, 2019, ApJ, 879, 125, 10.3847/1538-4357/ab2388