Chụp động mạch vành bằng CT với công nghệ 256 lát cắt và liều thấp được xác định theo thời gian

Springer Science and Business Media LLC - Tập 25 - Trang 217-230 - 2009
Wm. Guy Weigold1, Mark E. Olszewski2, Matthew J. Walker2
1Department of Medicine (Cardiology), Cardiovascular Research Institute, Washington Hospital Center, Washington, USA
2Computed Tomography Clinical Science, Philips Healthcare, Cleveland, USA

Tóm tắt

Kể từ khi ra mắt các máy quét 64 lát cắt, chụp cắt lớp vi tính đa detector (MDCT) đã chứng kiến sự gia tăng đáng kể trong việc áp dụng để đánh giá không xâm lấn bệnh mạch vành, mặc dù vẫn còn lo ngại về liều tia X. Sự ra mắt gần đây của chụp động mạch vành CT dự kiến (CCTA) đã bắt đầu giải quyết những lo ngại này; tuy nhiên, khả năng ứng dụng của nó với các máy quét hiện có vẫn bị giới hạn đối với các nhóm bệnh nhân được định nghĩa bởi nhịp tim, sự biến đổi nhịp tim và chỉ số khối cơ thể (BMI). Bài báo này xem xét CCTA dự kiến, ảnh hưởng của nhịp tim và sự biến đổi nhịp tim đến chất lượng hình ảnh, và cơ sở sinh lý cho việc chọn lựa các khoảng thời gian chụp hình tối ưu. Sau đó, chúng tôi thảo luận về công nghệ 256 lát cắt và 4 tháng kinh nghiệm lâm sàng đầu tiên của chúng tôi với CCTA dự kiến 256 lát cắt. Kết quả lâm sàng ban đầu của chúng tôi cho thấy rằng, CCTA động mạch vành dự kiến với liều thấp, chất lượng cao có thể áp dụng cho bệnh nhân có nhịp tim cao hơn, BMI cao hơn và có độ nhạy kém hơn với sự biến đổi nhịp tim khi sử dụng MDCT 256 lát cắt.

Từ khóa

#chụp cắt lớp vi tính #chụp động mạch vành #CT #MDCT #liều thấp #nhịp tim #BMI #công nghệ 256 lát cắt

Tài liệu tham khảo

Phurrough SE, Salive ME, Baldwin J et al (2008) Decision memo for computed tomographic angiography (CAG-00385 N). In: Medicare national coverage determinations manual. Sect. 220.1F. CMS publication 100-03. Centers for Medicare & Medicaid Services. http://www.cms.hhs.gov/mcd/viewdecisionmemo.asp?id=206. Accessed December 7, 2008 Brenner DJ, Hall EJ (2007) Computed tomography—an increasing source of radiation exposure. N Engl J Med 357:2277–2284. doi:10.1056/NEJMra072149 Budoff MJ, Achenbach S, Blumenthal RS et al (2006) Assessment of coronary artery disease by cardiac computed tomography: a scientific statement from the American heart association committee on cardiovascular imaging and intervention, Council on cardiovascular radiology and intervention, and Committee on cardiac imaging, Council on clinical cardiology. Circulation 114:1761–1791. doi:10.1161/CIRCULATIONAHA.106.178458 Einstein AJ, Moser KW, Thompson RC et al (2007) Radiation dose to patients from cardiac diagnostic imaging. Circulation 116:1290–1305. doi:10.1161/CIRCULATIONAHA.107.688101 Paul JF, Abada HT (2007) Strategies for reduction of radiation dose in cardiac multislice CT. Eur Radiol 17:2028–2037. doi:10.1007/s00330-007-0584-3 Hausleiter J, Meyer T (2008) Tips to minimize radiation exposure. J Cardiovasc Comput Tomogr 2:325–327. doi:10.1016/j.jcct.2008.08.012 Hausleiter J, Meyer T, Hadamitzky M et al (2006) Radiation dose estimates from cardiac multislice computed tomography in daily practice: impact of different scanning protocols on effective dose estimates. Circulation 113:1305–1310. doi:10.1161/CIRCULATIONAHA.105.602490 Leschka S, Stolzmann P, Schmid FT et al (2008) Low kilovoltage cardiac dual-source CT: attenuation, noise, and radiation dose. Eur Radiol 18:1809–1817. doi:10.1007/s00330-008-0966-1 Halliburton SS (2008) One-scan protocol does not fit all: responsible cardiovascular imaging with computed tomography. J Cardiovasc Comput Tomogr 2:323–324. doi:10.1016/j.jcct.2008.08.009 Gutstein A, Dey D, Cheng V et al (2008) Algorithm for radiation dose reduction with helical dual source coronary computed tomography angiography in clinical practice. J Cardiovasc Comput Tomogr 2:311–322. doi:10.1016/j.jcct.2008.07.003 Coles DR, Smail MA, Negus IS et al (2006) Comparison of radiation doses from multislice computed tomography coronary angiography and conventional diagnostic angiography. J Am Coll Cardiol 47:1840–1845. doi:10.1016/j.jacc.2005.11.078 Mollet NR, Cademartiri F, van Mieghem CAG et al (2005) High-resolution spiral computed tomography coronary angiography in patients referred for diagnostic conventional coronary angiography. Circulation 112:2318–2323. doi:10.1161/CIRCULATIONAHA.105.533471 Hsieh J, Londt J, Vass M et al (2006) Step-and-shoot data acquisition and reconstruction for cardiac X-ray computed tomography. Med Phys 33:4236–4248. doi:10.1118/1.2361078 Earls JP, Berman EL, Urban BA et al (2008) Prospectively gated transverse coronary CT angiography versus retrospectively gated helical technique: improved image quality and reduced radiation dose. Radiology 246:742–753. doi:10.1148/radiol.2463070989 Gutstein A, Wolak A, Lee C et al (2008) Predicting success of prospective and retrospective gating with dual-source coronary computed tomography angiography: development of selection criteria and initial experience. J Cardiovasc Comput Tomogr 2:81–90 Hirai N, Horiguchi J, Fujioka C et al (2008) Prospective versus retrospective ECG-gated 64-detector coronary CT angiography: assessment of image quality, stenosis, and radiation dose. Radiology 248:424–430. doi:10.1148/radiol.2482071804 Husmann L, Valenta I, Gaemperli O et al (2008) Feasibility of low-dose coronary CT angiography: first experience with prospective ECG-gating. Eur Heart J 29:191–197. doi:10.1093/eurheartj/ehm613 Klass O, Jeltsch M, Feuerlein S et al (2008) Prospectively gated axial CT coronary angiography: preliminary experiences with a novel low-dose technique. Eur Radiol. doi:10.1007/s00330-008-1222-4 Scheffel H, Alkadhi H, Leschka S et al (2008) Low-dose CT coronary angiography in the step-and-shoot mode: diagnostic performance. Heart 94:1132–1137. doi:10.1136/hrt.2008.149971 Shuman WP, Branch KR, May JM et al (2008) Prospective versus retrospective ECG gating for 64-detector CT of the coronary arteries: comparison of image quality and patient radiation dose. Radiology 248:431–437. doi:10.1148/radiol.2482072192 Stolzmann P, Leschka S, Scheffel H et al (2008) Dual-source CT in step-and-shoot mode: noninvasive coronary angiography with low radiation dose. Radiology 249:71–80. doi:10.1148/radiol.2483072032 Rybicki FJ, Otero HJ, Steigner ML et al (2008) Initial evaluation of coronary images from 320-detector row computed tomography. Int J Cardiovasc Imaging 24:535–546. doi:10.1007/s10554-008-9308-2 Earls JP (2008) Questions in cardiovascular CT: how to use a prospective gated technique for cardiac CT. J Cardiovasc Comput Tomogr 3(1):45–51. doi:10.1016/j.jcct.2008.10.013 Nakayama Y, Awai K, Funama Y et al (2005) Abdominal CT with low tube voltage: preliminary observations about radiation dose, contrast enhancement, image quality, and noise. Radiology 237:945–951. doi:10.1148/radiol.2373041655 Arevalo F, Sakamoto T (1964) On the duration of the isovolumetric relaxation period (IVRP) in dog and man. Am Heart J 67:651–656. doi:10.1016/0002-8703(64)90336-9 Luisada AA, MacCanon DM (1972) The phases of the cardiac cycle. Am Heart J 83:705–711. doi:10.1016/0002-8703(72)90412-7 Wiggers CJ (1921) Studies on the consecutive phases of the cardiac cycle. The duration of the consecutive phases of the cardiac cycle and the criteria for their precise determination. Am J Physiol 56:415–438 Wiggers CJ (1921) Studies on the consecutive phases of the cardiac cycle. The laws governing the relative durations of ventricular systole and diastole. Am J Physiol 56:439–459 Chung CS, Karamanoglu M, Kovács SJ (2004) Duration of diastole and its phases as a function of heart rate during supine bicycle exercise. Am J Physiol Heart Circ Physiol 287:H2003–H2008. doi:10.1152/ajpheart.00404.2004 Wang Y, Vidan E, Bergman GW (1999) Cardiac motion of coronary arteries: variability in the rest period and implications for coronary MR angiography. Radiology 213:751–758 Herzog C, Abolmaali N, Balzer JO et al (2002) Heart-rate-adapted image reconstruction in multidetector-row cardiac CT: influence of physiological and technical prerequisite on image quality. Eur Radiol 12:2670–2678 Bahler RC, Vrobel TR, Martin P (1983) The relation of heart rate and shortening fraction to echocardiographic indexes of left ventricular relaxation in normal subjects. J Am Coll Cardiol 2:926–933 Weissler AM, Harris WS, Schoenfeld CD (1968) Systolic time intervals in heart failure in man. Circulation 37:149–159 Stafford RW, Harris WS, Weissler AM (1970) Left ventricular systolic time intervals as indices of postural circulatory stress in man. Circulation 41:485–492 Manzke R, Grass M, Nielsen T et al (2003) Adaptive temporal resolution optimization in helical cardiac cone beam CT reconstruction. Med Phys 30:3072–3080. doi:10.1118/1.1624756 Steigner ML, Otero HJ, Cai T et al (2009) Narrowing the phase window width in prospectively ECG-gated single heart beat 320-detector row coronary CT angiography. Int J Cardiovasc Imaging 25:85–90. doi:10.1007/s10554-008-9347-8 Köhler TH, Proksa R, Grass M (2001) A fast and efficient method for sequential cone-beam tomography. Med Phys 28:2318–2327. doi:10.1118/1.1395025 Heuscher DJ, Chandra S (2003) Multi-phase cardiac imager. US Patent 6510337 Vembar M, Garcia MJ, Heuscher DJ et al (2003) A dynamic approach to identifying desired physiological phases for cardiac imaging using multislice spiral CT. Med Phys 30:1683–1693. doi:10.1118/1.1582812 Engel KJ, Bäumer C, Wiegert J et al (2008) Spectral analysis of scattered radiation in CT. In: Hsieh J, Samei E (eds) Medical imaging 2008: physics of medical imaging 6913:69131R. Society of Photographic Instrumentation Engineers, Bellingham, Washington, USA Vogtmeier G, Dorscheid R, Engel KJ et al (2008) Two-dimensional anti-scatter-grids for computed tomography detectors. In: Hsieh J, Samei E (eds) Medical imaging 2008: physics of medical imaging 6913:69159R. Society of Photographic Instrumentation Engineers, Bellingham, Washington, USA McCollough C, Cody D, Edyvean S, et al (2008) The measurement, reporting, and management of radiation dose in CT. Technical report 96, American Association of Physicists in Medicine, College Park, MA, USA Shrimpton PC (2004) Assessment of patient dose in CT. Technical report NRPB-PE/1/2004, National Radiological Protection Board, Chilton, UK