Low cycle fatigue life assessment of welded high-strength structural steels based on nominal and local design concepts

International Journal of Fatigue - Tập 101 - Trang 192-208 - 2017
Benjamin Möller1, Jörg Baumgartner1, Rainer Wagener1, Heinz Kaufmann1, Tobias Melz1,2
1Fraunhofer Institute for Structural Durability and System Reliability LBF, Darmstadt, Germany
2Technische Universität Darmstadt, Research Group of System Reliability, Adaptive Structures and Machine Acoustics SAM, Darmstadt, Germany

Tài liệu tham khảo

Hobbacher, 2016 DIN EN 1993-1-9:2010-12 – Eurocode 3: Design of steel structures – Part 1–9: Fatigue; German version EN 1993-1-9:2005 + AC:2009. DIN Deutsches Institut für Normung e.V., Berlin; 2010. DIN EN 13001-3-1:2013-12: Cranes – General design – Part 3–1: Limit states and proof competence of steel structure; German version EN 13001-3-1:2012+A1:2013. DIN Deutsches Institut für Normung e.V., Berlin; 2013. Rennert R, Kullig E, Vormwald M, Esderts A, Siegele D. FKM Richtlinie - Rechnerischer Festigkeitsnachweis für Maschinenbauteile aus Stahl, Eisenguss- und Aluminiumwerkstoffen. Herausgeber: Forschungskuratorium Maschinenbau (FKM), Frankfurt/Main. 6th revised Edition; 2012. Demofonti G, Riscifuli S, Sonsino CM, Kaufmann H, Sedlacek G, Müller C et al. High-strength steels in welded state for lightweight constructions under high and variable stress peaks. Directorate-General for Research, Information and Communication Unit, European Commission, Brussles, Final report EUR 19989 EN; 2001. ISBN no. 92-894-1588-6. Olivier R, Ritter W. Wöhlerlinienkatalog für Schweißverbindungen aus Baustählen – Teil 1: Stumpfstoß – Einheitliche statistische Auswertung von Ergebnissen aus Schwingfestigkeitsversuchen. Deutscher Verband für Schweißtechnik e.V., Düsseldorf, DVS-report no. 56/I; 1979. Wang, 2009, Discussion on fatigue design of welded joints enhanced by ultrasonic peening treatment (UPT), Int J Fatigue, 31, 644, 10.1016/j.ijfatigue.2008.03.030 Leitner, 2012, Influence of high frequency peening on fatigue of high-strength steels, FME Trans, 40, 99 Berg, 2014, Ermüdungsverhalten HFH-nachbehandelter Kerbdetails des Mobilkranbaus, Stahlbau, 83, 553, 10.1002/stab.201410180 Berg, 2016, Fatigue behaviour of high frequency hammer peened ultra high strength steels, Int J Fatigue, 82, 35, 10.1016/j.ijfatigue.2015.08.012 Dong P, Hong JK, Cao Z. Structural Stress Based Master S-N Curve for Welded Joints. IIW Doc. XIII-1930-02/XV-1119-02. In: 55th Annual Assembly of International Institute of Welding (IIW), Copenhagen, June 23–28; 2002. Sonsino, 2011, Interpretation of overload effects under spectrum loading of welded high-strength steel joints, Weld World, 55, 66, 10.1007/BF03321544 Kuhlmann U, Dürr A, Bergmann J, Thumser R. Effizienter Stahlbau aus höherfesten Stählen unter Ermüdungsbeanspruchung. Research report P 620, Forschungsvereinigung Stahlanwendung e.V., Düsseldorf; 2006. Leitner, 2015, Fatigue strength of HFMI-treated high-strength steel joints under constant and variable amplitude block loading, Proc Eng, 101, 251, 10.1016/j.proeng.2015.02.036 Olivier R, Ritter W. Wöhlerlinienkatalog für Schweißverbindungen aus Baustählen – Teil 2: Quersteife – Einheitliche statistische Auswertung von Ergebnissen aus Schwingfestigkeitsversuchen. DVS-Berichte 56/II, Deutscher Verband für Schweißtechnik e.V., Düsseldorf; 1980. Zilli G, Maiorana E, Paultier J, Fanica A, Hechler O, Rauert T et al. Application of duplex stainless steel for weld bridge construction in an aggressive environment. Report EUR 2395 EN, European Commission, Research Fund for coal and steel; 2008. Leitner, 2015, Fatigue strength of HFMI-treated and stress-relief annealed high-strength steel weld joints, Proc Eng, 133, 477, 10.1016/j.proeng.2015.12.618 Sonander, 2000, Ermüdung von geschweißten Kreuzstößen aus WELDOX 1100, Stahlbau, 69, 317, 10.1002/stab.200000930 Radaj, 2009, Recent developments in local concepts of fatigue assessment of welded joints, Int J Fatigue, 31, 2, 10.1016/j.ijfatigue.2008.05.019 Radaj, 2006 Melz T, Möller B, Baumgartner J, Ummenhofer T, Herion S, Hrabowski J et al. Enhancement of the local concept of fatigue assessment of welded crane structures made of high-strength steel in the low cycle fatigue regime. Research report P 900, Forschungsvereinigung Stahlanwendung e.V., Düsseldorf; 2015. DIN EN ISO 5817:2014-06: Welding – Fusion-welded joints in steel, nickel, titanium and their alloys (beam welding excluded) – Quality levels for imperfections (ISO 5817:2014); German version EN ISO 5817:2014. DIN Deutsches Institut für Normung e.V., Berlin; 2014. Puthli R, Herion S, Bergers J, Sedlacek G, Müller C, Stötzel J et al. Beurteilung des Ermüdungsverhaltens von Krankonstruktionen bei Einsatz hoch- und ultra-hochfester Stähle. Research report P 512, Forschungsvereinigung Stahlanwendung e.V., Düsseldorf; 2006. Ummenhofer T, Herion S, Hrabowski J, Feldmann M, Eichler B, Bucak Ö et al. Bemessung von ermüdungsbeanspruchten Bauteilen aus hoch- und ultrahochfesten Feinkornbaustählen im Kran- und Anlagenbau. Research report P 778, Forschungsvereinigung Stahlanwendung e.V., Düsseldorf; 2013. SEP 1240. Testing and Documentation Guideline for the Experimental Determination of Mechanical Properties of Steel Sheets for CAE-Calculations. Stahlinstitut VDEh, 1st ed.; 2006. Lanz C, Wagener R, Melz T. FasTest – Fatigue Related Application Specific Testing Solutions. In: Baumgartner J, Melz T,editors. Proceedings of the 4th Symposium on Structural Durability in Darmstadt SoSDiD. Fraunhofer Verlag, Stuttgart; 2014. p. 219–30. ISBN no. 978-3-8396-0734-3. Sonsino, 2010, Effects on lifetime under spectrum loading, Mat Test, 52, 428, 10.3139/120.110145 Möller, 2015, Fatigue life and cyclic material behaviour of butt-welded high-strength steel in the LCF regime, Mat Test, 57, 141, 10.3139/120.110691 Möller, 2015, Fatigue life of welded high-strength steels under Gaussian loads, Proc Eng, 101, 293, 10.1016/j.proeng.2015.02.035 Sonsino, 2007, Fatigue testing under variable amplitude loading, Int J Fatigue, 29, 1080, 10.1016/j.ijfatigue.2006.10.011 Sonsino, 1989, Limitations in the use of RMS-values and equivalent stresses in variable ampltidue loading, Int J Fatigue, 11, 142, 10.1016/0142-1123(89)90433-7 Palmgren, 1924, Die Lebensdauer von Kugellagern, VDI Zeitschrift, 68, 339 Miner, 1945, Cumulative damage in fatigue, J Appl Mech, 12, A159, 10.1115/1.4009458 Haagensen PJ, Maddox SJ. IIW Recommendations on Post Weld Fatigue Life Improvement of Steel and Aluminium Structures. International Institute of Welding (IIW), IIW Doc. no. XIII-2200r7-07; 2010. Yildirim, 2012, Fatigue strength improvement factors for high strength steel welded joints treated by high frequency mechanical impact, Int J Fatigue, 44, 168, 10.1016/j.ijfatigue.2012.05.002 Ummenhofer, 2009, Schweißnahtnachbehandlung mit höherfrequenten Hämmerverfahren – Ermüdungsfestigkeit, Qualitätssicherung, Bemessung, Stahlbau, 78, 605, 10.1002/stab.200910074 Weidner P, Weich I, Ummenhofer T. High frequency hammer peening of LCD-stressed ultra high strength steels. International Institute of Welding (IIW), IIW Doc. no. XIII-2341-10; 2010. Yıldırım, 2015, Review of fatigue data for welds improved by tungsten inert gas dressing, Int J Fatigue, 79, 36, 10.1016/j.ijfatigue.2015.04.017 Bäumel, 1990 DIN EN ISO 18265:2013 – Metallic materials – Conversion of hardness values (ISO 18265:2013); German version EN ISO 18265:2013. DIN Deutsches Institut für Normung e.V., Berlin; 2014. Baumgartner, 2013, Influence of weld geometry and residual stresses on the fatigue strength of longitudinal stiffeners, Weld World, 57, 841, 10.1007/s40194-013-0078-7 Baumgartner J. Schwingfestigkeit von Schweißverbindungen unter Berücksichtigung von Schweißeigenspannungen und Größeneinflüssen. Fraunhofer Institute for Structural Durability and System Reliability LBF. Report no. FB-238, Fraunhofer-Verlag, Stuttgart; 2014. Radaj, 1990 Zhang, 2002, Methods of predicting the fatigue lives of laser beam welded lap welds under shear stresses, Weld Cutting, 2, 96 Sonsino, 2009, A, Consideration of allowable equivalent stresses for fatigue design of welded joints according to the notch stress concept with reference radii rref=1.00 and 0.05mm, Weld World, 53, R64, 10.1007/BF03266705 Karakas, 2013, Consideration of mean-stress effects on fatigue life of welded magnesium joints by the application of the Smith-Watson-Topper and reference radius concepts, Int J Fatigue, 49, 1, 10.1016/j.ijfatigue.2012.11.007 Karakas Ö, Morgenstern C, Sonsino CM. Fatigue design of welded joints from the wrought magnesium alloy AZ31 (ISO-MgAl3Zn1) by the local stress concept with the fictitious notch radus of rf = 1.0 mm and 0.05 mm. Materialwiss Werkstofftech 2007; 38(8): 603–12. http://dx.doi.org/10.1002/mawe.200700182. Karakas, 2008, Fatigue design of welded joints from the wrought magnesium alloy AZ31 by the local stress concept with the fictitious notch radii of rf=1.0mm and 0.05mm, Int J Fatigue, 30, 2210, 10.1016/j.ijfatigue.2008.05.017 Sonsino, 2008, Fatigue design values for welded joints of the wrought magnesium alloy AZ31 (ISO-MgAl3Zn1) according to the nominal, structural and notch stress concepts in comparison to welded steel and aluminium connections, Weld World, 52, 79, 10.1007/BF03266643 Morgenstern, 2006, Fatigue design of aluminium welded joints by the local stress concept with the fictitious notch radius of rf=1mm, Int J Fatigue, 28, 881, 10.1016/j.ijfatigue.2005.10.006 Karakaş, 2017, Application of Neuber’s effective stress method for the evaluation of the fatigue behaviour of magnesium welds, Int J Fatigue, 101, 115, 10.1016/j.ijfatigue.2016.10.023 Radaj, 1969, Näherungsweise Berechnung der Formzahl von Schweißnähten, Schweiß Schneid, 21, 151 Neuber, 1968, Über die Berücksichtigung der Spannungskonzentration bei Festigkeitsberechnungen, Konstruktion, 20, 245 Neuber, 2001 Smith, 1970, A stress-strain function for fatigue of metals, J Mater, 5, 767 Werner S. Zur betriebsfesten Auslegung von Bauteilen aus AlMgSi unter Berücksichtigung von hohen Mitteldehnungen und Spannungskonzentrationen. Fraunhofer Institute for Structural Durability and System Reliability LBF, Darmstadt, Report no. FB-217; 1999. Lillemäe, 2016, Influence of weld quality on the fatigue strength of thin normal and high strength steel butt joints, Weld World, 60, 731, 10.1007/s40194-016-0326-8 Olivier R, Koettgen VB, Seeger T. Schweißverbindungen I - Schwingfestigkeitsnachweise für Schweißverbindungen auf Grundlage örtlicher Beanspruchungen. Forschungskuratorium Maschinenbau e.V. (FKM), Frankfurt/Main, Forschungsheft 143; 1989. Karakas, 2010, Fatigue behaviour of welded joints from magnesium alloy (AZ31) according to the local strain concept, Materialwiss Werkstofftech, 41, 73, 10.1002/mawe.200900543 Ramberg W, Osgood WR. Description of Stress-Strain Curves by Three Parameters; NACA Technical Note No. 902; 1943. Basquin, 1910, The exponential law of endurance tests, ASTM Proc, 10, 625 Coffin, 1954, A study of the effects of cyclic thermal stresses on a ductile metal, Trans ASME, 76, 931 Manson, 1965, Fatigue: a complex subject – some simple approximations, Exp Mech, 5, 193, 10.1007/BF02321056 Morrow, 1965, Cyclic plastic strain energy and fatigue of metals; internal friction, damping and cyclic plasticity, ASTM, Special Technical Publication no. 378, 45 Wagener, 2007