Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Nhựa Polyethylene Glycol (PEG) Tải Thấp Để Tổng Hợp Peptide Tinh Khiết Cao Và Các Thí Nghiệm Gắn Kết Tế Bào
Tóm tắt
Trong tổng hợp peptide pha rắn (SPPS), nồng độ cao của các nhóm chức năng trên nền rắn và thể tích nở đủ cho phép việc sử dụng nó trong sàng lọc nhanh chóng các chất kích thích thụ thể và peptide điều trị. Tuy nhiên, việc tải nhựa cao thường dẫn đến độ tinh khiết không đủ của các peptide tổng hợp được và kết quả dương tính giả với mục tiêu do tương tác không đúng cách giữa các peptide láng giềng. Do đó, nghiên cứu này tập trung vào các nhựa polyethylene glycol (PEG) tải thấp để đạt được sàng lọc độ đặc hiệu cao bằng cách sử dụng nhựa hydrogel PEG kiểu lõi-vỏ. Độ tinh khiết của peptide và độ đặc hiệu mục tiêu được xác định bằng cách đánh giá (1) tính chất nở của nhựa trong các dung môi khác nhau, (2) độ tinh khiết của một decapeptide phức tạp Jung-Redemann (JR), và (3) hành vi bám dính của các nhựa liên kết với peptide GRGDS-pentapeptide. Các kết quả được so sánh với những kết quả thu được bằng nhựa polyacrylamide (PAM) và nhựa TentaGel S NH2 truyền thống (TG®). Độ tinh khiết cao nhất của decapeptide JR đạt được khi sử dụng nhựa dựa trên PEG với độ liên kết chéo cao hơn (PEGHN). Hơn nữa, nhựa được xác định là môi trường vi mô ngoại bào thích hợp để phù hợp với sự gắn kết đặc hiệu thật sự với tế bào nguyên bào sợi. Do đó, SPPS và các thử nghiệm gắn tế bào sử dụng nhựa PEG phát triển cung cấp một chiến lược nghiêm ngặt mới với tiềm năng ứng dụng cho sàng lọc dương tính thật sự trong các thí nghiệm sinh học.
Từ khóa
#tổng hợp peptide; nhựa polyethylene glycol; độ tinh khiết; sàng lọc độ đặc hiệu cao; gắn kết tế bàoTài liệu tham khảo
Krenning, E.P., Bakker, W.H., Breeman, W.A., Koper, J.W., Kooij, P.P., Ausema, L., Lameris, J.S., Reubi, J.C., Lamberts, S.W.: Localisation of endocrine-related tumours with radioiodinated analogue of somatostatin. Lancet 1, 242–244 (1989)
Fischer, P.M.: Peptide, peptidomimetic, and small-molecule antagonists of the p53-HDM2 protein-protein interaction. Int J Pept Res Ther 12, 3–19 (2006)
Rubattu, S., Volpe, M.: The atrial natriuretic peptide: a changing view. J. Hypertens. 19, 1923–1931 (2001)
Tonne, J.M., Campbell, J.M., Cataliotti, A., Ohmine, S., Thatava, T., Sakuma, T., Macheret, F., Huntley, B.K., Burnett, J.C., Jr., Ikeda, Y.: Secretion of glycosylated pro–B-type natriuretic peptide from normal cardiomyocytes. Clin Chem 57, 864–873 (2011)
Kagota, S., Yamaguchi, Y., Nakamura, K., Sugiura, T., Waku, K., Kunitomo, M.: 2-Arachidonoylglycerol, a candidate of endothelium-derived hyperpolarizing factor. Eur J Pharmacol 415, 233–238 (2001)
Sams-Dodd, F.: Drug discovery: selecting the optimal approach. Drug Discov Today 11, 465–472 (2006)
Jeon, H.Y., Lee, A.J., Ha, K.S.: Polymer-based delivery of peptide drugs to treat diabetes: normalizing hyperglycemia and preventing diabetic complications. BioChip J 16, 111–127 (2022)
Levin, E.R., Gardner, D.G., Samson, W.K.: Natriuretic peptides. N Engl J Med 339, 321–328 (1998)
Lee, C.Y., Burnett, J.C.: Natriuretic peptides and therapeutic applications. Heart Fail Rev 12, 131–142 (2007)
Volpe, M., Rubattu, S., Burnett, J., Jr.: Natriuretic peptides in cardiovascular diseases: current use and perspectives. Eur Heart J 35, 419–425 (2014)
Zhu, Y., Miller, T.L., Chidekel, A., Shaffer, T.H.: KL4-surfactant (Lucinactant) protects human airway epithelium from hyperoxia. Pediatr Res 64, 154–158 (2008)
Cuevas-Ramos, D., Fleseriu, M.: Pasireotide: a novel treatment for patients with acromegaly. Drug Des Devel Ther 10, 227–239 (2016)
Perel, G., Bliss, J., Thomas, C.M.: Carfilzomib (Kyprolis): a novel proteasome inhibitor for relapsed and/or refractory multiple myeloma. Pharm Ther 41, 303–307 (2016)
Corsetti, M., Tack, J.: Linaclotide: a new drug for the treatment of chronic constipation and irritable bowel syndrome with constipation. U Eur Gastroenterol J 1, 7–20 (2013)
Burness, C.B., McCormack, P.L.: Teduglutide: a review of its use in the treatment of patients with short bowel syndrome. Drugs 73, 935–947 (2013)
Coin, I., Beyermann, M., Bienert, M.: Solid-phase peptide synthesis: from standard procedures to the synthesis of difficult sequences. Nat Protoc 2, 3247–3256 (2007)
Milton, R.C., Becker, E., Milton, S.C., Baxter, J.E., Elsworth, J.F.: Improved purities for Fmoc-amino acids from Fmoc-ONSu. Int J Pept Protein Res 30, 431–432 (1987)
Miranda, L.P., Alewood, P.F.: Accelerated chemical synthesis of peptides and small proteins. Proc Natl Acad Sci U S A 96, 1181–1186 (1999)
Sasikumar, P.G., Kumar, K.S., Pillai, V.N.: Synthesis of retro acyl carrier protein (74–65) fragment on a new glycerol based polystyrene support. Protein Pept Lett 10, 427–433 (2003)
Tickler, A.K., Clippingdale, A.B., Wade, J.D.: Amyloid-beta as a “difficult sequence” in solid phase peptide synthesis. Protein Pept Lett 11, 377–384 (2004)
Sohma, Y., Hayashi, Y., Kimura, M., Chiyomori, Y., Taniguchi, A., Sasaki, M., Kimura, T., Kiso, Y.: The ‘O-acyl isopeptide method’ for the synthesis of difficult sequence-containing peptides: application to the synthesis of Alzheimer’s disease-related amyloid beta peptide (Abeta) 1–42. J Pept Sci 11, 441–451 (2005)
Fauvet, B., Butterfield, S.M., Fuks, J., Brik, A., Lashuel, H.A.: One-pot total chemical synthesis of human α-synuclein. Chem Commun 49, 9254–9256 (2013)
Oueslati, A., Fournier, M., Lashuel, H.A.: Role of post-translational modifications in modulating the structure, function and toxicity of alpha-synuclein: implications for Parkinson’s disease pathogenesis and therapies. Prog Brain Res 183, 115–145 (2010)
Sletten, E.T., Nuño, M., Guthrie, D., Seeberger, P.H.: Real-time monitoring of solid-phase peptide synthesis using a variable bed flow reactor. Chem Commun 55, 14598–14601 (2019)
Coin, I.: The depsipeptide method for solid-phase synthesis of difficult peptides. J Pept Sci 16, 223–230 (2010)
Wan, L., Ke, B., Li, X., Meng, X., Zhang, L., Xu, Z.: Honeycomb-patterned films of polystyrene/poly (ethylene glycol): preparation, surface aggregation and protein adsorption. Sci China Ser B Chem 52, 969–974 (2009)
Bayer, E., Mutter, M.: Liquid phase synthesis of peptides. Nature 237, 512–513 (1972)
Kates, S.A., McGuinness, B.F., Blackburn, C., Griffin, G.W., Solé, N.A., Barany, G., Albericio, F.: “High-load” polyethylene glycol-polystyrene (PEG-PS) graft supports for solid-phase synthesis. Biopolymers 47, 365–380 (1998)
Quarrell, R., Claridge, T.D., Weaver, G.W., Lowe, G.: Structure and properties of TentaGel resin beads: implications for combinatorial library chemistry. Mol Divers 1, 223–232 (1996)
Auzanneau, F.I., Meldal, M., Bock, K.: Synthesis, characterization and biocompatibility of PEGA resins. J Pept Sci 1, 31–44 (1995)
Miranda, L.P., Lubell, W.D., Halkes, K.M., Groth, T., Grøtli, M., Rademann, J., Gotfredsen, C.H., Meldal, M.: SPOCC-194, a new high functional group density PEG-based resin for solid-phase organic synthesis. J Comb Chem 4, 523–529 (2002)
Grøtli, M., Gotfredsen, C.H., Rademann, J., Buchardt, J., Clark, A.J., Duus, J.O., Meldal, M.: Physical properties of poly(ethylene glycol) (PEG)-based resins for combinatorial solid phase organic chemistry: a comparison of PEG-cross-linked and PEG-grafted resins. J Comb Chem 2, 108–119 (2000)
Wang, Z., Yang, R., Zhu, J., Zhu, X.: PEG-related polymer resins as synthetic supports. Sci China Chem 53, 1844–1852 (2010)
Keifer, P.A.: Influence of resin structure, tether length, and solvent upon the high-resolution (1)H NMR spectra of solid-phase-synthesis resins. J Org Chem 61, 1558–1559 (1996)
Varnava, K.G., Sarojini, V.: Making solid-phase peptide synthesis greener: a review of the literature. Chem Asian J 14, 1088–1097 (2019)
Kim, T.H., Kim, S.G.: Clinical outcomes of occupational exposure to n, n-dimethylformamide: perspectives from experimental toxicology. Saf Health Work 2, 97–104 (2011)
Kennedy, G.L., Jr.: Biological effects of acetamide, formamide, and their mono and dimethyl derivatives: an update. Crit Rev Toxicol 31, 139–222 (2001)
Isidro-Llobet, A., Kenworthy, M.N., Mukherjee, S., Kopach, M.E., Wegner, K., Gallou, F., Smith, A.G., Roschangar, F.: Sustainability challenges in peptide synthesis and purification: from R&D to production. J Org Chem 84, 4615–4628 (2019)
Zinieris, N., Zikos, C., Ferderigos, N.: Improved solid-phase peptide synthesis of ‘difficult peptides’ by altering the microenvironment of the developing sequence. Tetrahedron Lett 47, 6861–6864 (2006)
Zhang, R., Li, Q., Zhang, J., Li, J., Ma, G., Su, Z.: Preparation of poly (ethylene glycol) acrylate grafted polystyrene resin for solid-phase peptide synthesis. React Funct Polym 72, 773–780 (2012)
Güven, E., Duus, K., Lydolph, M.C., Jørgensen, C.S., Laursen, I., Houen, G.: Non-specific binding in solid phase immunoassays for autoantibodies correlates with inflammation markers. J Immunol Methods 403, 26–36 (2014)
Harfenist, E.J., Packham, M.A., Mustard, J.F.: Effects of the cell adhesion peptide, Arg-Gly-Asp-Ser, on responses of washed platelets from humans, rabbits, and rats. Blood 71, 132–136 (1988)
Bohnert, T., Gan, L.S.: Plasma protein binding: from discovery to development. J Pharm Sci 102, 2953–2994 (2013)
Peng, L., Liu, R., Marik, J., Wang, X., Takada, Y., Lam, K.S.: Combinatorial chemistry identifies high-affinity peptidomimetics against alpha4beta1 integrin for in vivo tumor imaging. Nat Chem Biol 2, 381–389 (2006)
Kim, J.S., Jun, S.Y., Kim, Y.S.: Critical issues in the development of immunotoxins for anticancer therapy. J Pharm Sci 109, 104–115 (2020)
Navya, P.N., Kaphle, A., Srinivas, S.P., Bhargava, S.K., Rotello, V.M., Daima, H.K.: Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Converg 6, 23 (2019)
Kim, S., Lee, S.M., Lee, S.S., Shin, D.S.: Microfluidic generation of amino-functionalized hydrogel microbeads capable of on-bead bioassay. Micromachines 10, 527 (2019)
Lander, Y., Liu, D., Montels, J., Morels, J., Perrin, C.: Enzymatic reaction automation in nanodroplet microfluidic for the quality control of monoclonal antibodies. BioChip J 16, 317–325 (2022)
Lee, Y.S., Choi, J.W., Kang, T., Chung, B.G.: Deep learning-assisted droplet digital PCR for quantitative detection of human coronavirus. BioChip J 17, 112–119 (2023)
Nielsen, L.J., Olsen, L.F., Ozalp, V.C.: Aptamers embedded in polyacrylamide nanoparticles: a tool for in vivo metabolite sensing. ACS Nano 4, 4361–4370 (2010)
Liu, Y., Li, Z., Xu, J., Wang, B., Liu, F., Na, R., Guan, S., Liu, F.: Effects of amphiphilic monomers and their hydrophilic spacers on polyacrylamide hydrogels. RSC Adv 9, 3462–3468 (2019)
Carpino, L.A., Krause, E., Sferdean, C.D., Schümann, M., Fabian, H., Bienert, M., Beyermann, M.: Synthesis of ‘difficult’ peptide sequences: application of a depsipeptide technique to the Jung-Redemann 10-and 26-mers and the amyloid peptide Aβ (1–42). Tetrahedron Lett 45, 7519–7523 (2004)
Choi, H., Aldrich, J.V.: Comparison of methods for the Fmoc solid-phase synthesis and cleavage of a peptide containing both tryptophan and arginine. Int J Pept Protein Res 42, 58–63 (1993)
García-Martín, F., Quintanar-Audelo, M., García-Ramos, Y., Cruz, L.J., Gravel, C., Furic, R., Côté, S., Tulla-Puche, J., Albericio, F.: ChemMatrix, a poly(ethylene glycol)-based support for the solid-phase synthesis of complex peptides. J Comb Chem 8, 213–220 (2006)
Lawrenson, S.B.: Greener solvents for solid-phase organic synthesis. Pure Appl Chem 90, 157–165 (2018)
Roice, M., Pillai, V.R.: Poly (styrene-co-glycerol dimethacrylate): synthesis, characterization, and application as a resin for gel-phase peptide synthesis. J Polym Sci Part A Polym Chem 43, 4382–4392 (2005)
Ferrari, M., Cirisano, F., Morán, M.C.: Mammalian cell behavior on hydrophobic substrates: Influence of surface properties. Colloids Interfaces 3, 48 (2019)
Lu, Z., Jiang, X., Zuo, X., Feng, L.: Improvement of cytocompatibility of 3D-printing resins for endothelial cell adhesion. RSC Adv 6, 102381–102388 (2016)
Zorlutuna, P., Vadgama, P., Hasirci, V.: Both sides nanopatterned tubular collagen scaffolds as tissue-engineered vascular grafts. J Tissue Eng Regen Med 4, 628–637 (2010)
Huettner, N., Dargaville, T.R., Forget, A.: Discovering cell-adhesion peptides in tissue engineering: beyond RGD. Trends Biotechnol 36, 372–383 (2018)
Shin, D.S., You, J., Rahimian, A., Vu, T., Siltanen, C., Ehsanipour, A., Stybayeva, G., Sutcliffe, J., Revzin, A.: Photodegradable hydrogels for capture, detection, and release of live cells. Angew Chem Int Ed 53, 8221–8224 (2014)
Franchi, M., Piperigkou, Z., Karamanos, K.A., Franchi, L., Masola, V.: Extracellular matrix-mediated breast cancer cells morphological alterations, invasiveness, and microvesicles/exosomes release. Cells 9, 2031 (2020)
Franchi, M., Piperigkou, Z., Riti, E., Masola, V., Onisto, M., Karamanos, N.K.: Long filopodia and tunneling nanotubes define new phenotypes of breast cancer cells in 3D cultures. Matrix Biol Plus 6–7, 100026 (2020)
Schneider, C.S., Perez, J.G., Cheng, E., Zhang, C., Mastorakos, P., Hanes, J., Winkles, J.A., Woodworth, G.F., Kim, A.J.: Minimizing the non-specific binding of nanoparticles to the brain enables active targeting of Fn14-positive glioblastoma cells. Biomaterials 42, 42–51 (2015)
Dalby, M.J.: Topographically induced direct cell mechanotransduction. Med Eng Phys 27, 730–742 (2005)
Bachir, A.I., Horwitz, A.R., Nelson, W.J., Bianchini, J.M.: Actin-based adhesion modules mediate cell interactions with the extracellular matrix and neighboring cells. Cold Spring Harb Perspect Biol 9, a023234 (2017)
Park, M.H., Reátegui, E., Li, W., Tessier, S.N., Wong, K.H., Jensen, A.E., Thapar, V., Ting, D., Toner, M., Stott, S.L., Hammond, P.T.: Enhanced isolation and release of circulating tumor cells using nanoparticle binding and ligand exchange in a microfluidic chip. J Am Chem Soc 139, 2741–2749 (2017)