Mức độ thấp của axit amin chuỗi nhánh, axit eicosapentaenoic và vi chất dinh dưỡng có liên quan đến khối lượng cơ, sức mạnh và chức năng thấp ở người lớn tuổi sống trong cộng đồng

Elsevier BV - Tập 23 - Trang 27-34 - 2018
S. ter Borg1, Y. C. Luiking1,2,3, A. van Helvoort1,4, Y. Boirie5,6,7, J. M. G. A. Schols8, C. P. G. M. de Groot9
1Danone Nutricia Research, Nutricia Advanced Medical Nutrition, Utrecht, the Netherlands
2Center for Translational Research in Aging and Longevity, Department of Health and Kinesiology, Texas A & M University, College Station, USA
3Nutricia Research, Utrecht, The Netherlands
4NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
5University of Clermont Auvergne, Unité de Nutrition Humaine, Clermont-Ferrand, France
6INRA, UMR 1019, UNH, CRNH Auvergne, Clermont-Ferrand, France
7CHU Clermont-Ferrand, Clinical Nutrition Department, Clermont-Ferrand, France
8Department of Health Services Research and Department of Family Medicine, School CAPHRI, Maastricht University, Maastricht, the Netherlands
9Wageningen University, Division of Human Nutrition, Wageningen, The Netherlands

Tóm tắt

Sarcopenia, sự suy giảm khối lượng cơ và chức năng liên quan đến tuổi tác, có thể dẫn đến các kết quả sức khỏe bất lợi và sự mất độc lập sau đó. Dinh dưỡng không đầy đủ là một yếu tố quan trọng góp phần vào nguyên nhân của sarcopenia, và các chiến lược chế độ ăn uống đang được nghiên cứu để ngăn chặn hoặc trì hoãn hội chứng geriatric này. Nghiên cứu hiện tại điều tra xem có mối liên hệ nào giữa các chỉ số trạng thái dinh dưỡng sinh hóa, các tham số cơ bắp và sarcopenia ở người cao tuổi sống trong cộng đồng hay không. Dữ liệu từ nghiên cứu Sarcopenia Maastricht (MaSS) được sử dụng, trong đó chỉ số cơ xương (SMI), tốc độ đi bộ 4 mét, hoàn thành 5 lần đứng ghế và sức mạnh nắm tay được đánh giá ở người cao tuổi (n=227). Sarcopenia được định nghĩa theo thuật toán của Nhóm Chuyên gia Châu Âu về Sarcopenia ở người cao tuổi. Mẫu máu nhịn ăn được phân tích về mức độ axit amin, hồ sơ phospholipid hồng cầu, 25-hydroxyvitamin D (25(OH)D), α-tocopherol, magiê và homocysteine được xác định trong các mức độ máu nhịn ăn. Mô hình hồi quy tuyến tính tổng quát và hồi quy logistic được sử dụng để phân tích dữ liệu. Mức độ axit amin thiết yếu (EAA), tổng axit amin chuỗi nhánh (BCAA) và leucine trong máu thấp liên quan đến SMI thấp hơn (P<0,001), sức mạnh (P<0,001) và thời gian hoàn thành ghế đứng dài hơn (P<0,05), trong khi không tìm thấy mối liên hệ nào với tổng axit amin (TAA). Mức độ axit eicosapentaenoic (EPA), 25(OH)D và homocysteine thấp liên quan đến các giá trị tham số cơ bắp thấp hơn (P<0,05). Không có mối liên hệ đáng kể nào được tìm thấy cho SFA, MUFA, PUFA, axit béo n-3 và n-6, axit docosahexaenoic (DHA), tỷ lệ α-tocopherol-cholesterol và magiê. Sarcopenia phổ biến hơn ở những người có mức leucine, BCAA, EAA, EPA thấp và homocysteine cao (P<0,05). Tuổi tác và chỉ số khối cơ thể (BMI) được xác định là những biến số liên quan. Một mối liên hệ mạnh mẽ chỉ được tìm thấy cho tốc độ đi bộ thấp hơn và mức 25(OH)D thấp hơn. Các tham số cơ bắp bị suy yếu có liên quan đến giá trị máu thấp của các axit amin, axit béo, vitamin D và homocysteine.

Từ khóa

#sarcopenia #mức độ axit amin chuỗi nhánh #axit eicosapentaenoic #người cao tuổi #khối lượng cơ #sức mạnh #chức năng

Tài liệu tham khảo

Koopman R, van Loon LJ. Aging, exercise, and muscle protein metabolism. Journal of applied physiology 2009;106: 2040–2048 Short KR, Nair KS. Mechanisms of sarcopenia of aging. Journal of endocrinological investigation 1999;22: 95–105 Lindle RS, Metter EJ, Lynch NA et al. Age and gender comparisons of muscle strength in 654 women and men aged 20–93 yr. Journal of applied physiology 1997;83: 1581–1587 Landi F, Calvani R, Cesari M et al. Sarcopenia: an overview on current definitions, diagnosis and treatment. Curr Protein Pept Sci, 2017 United Nations. Department of Economic and Social Affairs. Population Division Worlds Population Ageing: 1950–2050. https://doi.org/www.un.org/esa/population/publications/worldageing19502050/, accessed 16–07–2017. Cruz–Jentoft AJ, Baeyens JP, Bauer JM et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age and ageing 2010;39: 412–423 Morley JE, Argiles JM, Evans WJ et al. Nutritional recommendations for the management of sarcopenia. Journal of the American Medical Directors Association 2010;11: 391–396 Bauer J, Biolo G, Cederholm T et al. Evidence–based recommendations for optimal dietary protein intake in older people: a position paper from the PROT–AGE Study Group. Journal of the American Medical Directors Association 2013;14: 542–559 Verlaan S, Aspray TJ, Bauer JM et al. Nutritional status, body composition, and quality of life in community–dwelling sarcopenic and non–sarcopenic older adults: A case–control study. Clin Nutr 2017;36: 267–274 Ten Borg S, de Groot LC, Mijnarends DM et al. Differences in Nutrient Intake and Biochemical Nutrient Status Between Sarcopenic and Nonsarcopenic Older Adults–Results From the Maastricht Sarcopenia Study. Journal of the American Medical Directors Association 2016;17: 393–401 Houston DK, Nicklas BJ, Ding J et al. Dietary protein intake is associated with lean mass change in older, community–dwelling adults: the Health, Aging, and Body Composition (Health ABC) Study. Am J Clin Nutr 2008;87: 150–155 Houston DK, Tooze JA, Garcia K et al. Protein Intake and Mobility Limitation in Community–Dwelling Older Adults: the Health ABC Study. J Am Geriatr Soc 2017;65: 1705–1711 McDonald CK, Ankarfeldt MZ, Capra S et al. Lean body mass change over 6 years is associated with dietary leucine intake in an older Danish population. The British journal of nutrition 2016;115: 1556–1562 Mithal A, Bonjour JP, Boonen S et al. Impact of nutrition on muscle mass, strength, and performance in older adults. Osteoporosis international: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 2013;24: 1555–1566 Robinson S, Cooper C, Aihie Sayer A. Nutrition and sarcopenia: a review of the evidence and implications for preventive strategies. Journal of aging research 2012;2012: 510801 Sohl E, van Schoor NM, de Jongh RT et al. Vitamin D status is associated with functional limitations and functional decline in older individuals. The Journal of clinical endocrinology and metabolism 2013;98: E1483–1490 Frison E, Boirie Y, Peuchant E et al. Plasma fatty acid biomarkers are associated with gait speed in community–dwelling older adults: The Three–City–Bordeaux study. Clin Nutr 2017;36: 416–422 Boirie Y. Fighting sarcopenia in older frail subjects: protein fuel for strength, exercise for mass. Journal of the American Medical Directors Association 2013;14: 140–143 Lips P. Vitamin D deficiency and secondary hyperparathyroidism in the elderly: consequences for bone loss and fractures and therapeutic implications. Endocrine reviews 2001;22: 477–501 Brouwer–Brolsma EM, Vaes AM, van de Zwaluw NL et al. Relative importance of summer sun exposure, vitamin D intake, and genes to vitamin D status in Dutch older adults: The B–PROOF study. The Journal of steroid biochemistry and molecular biology 2016;164: 168–176 Mijnarends DM, Schols JM, Meijers JM et al. Instruments to assess sarcopenia and physical frailty in older people living in a community (care) setting: similarities and discrepancies. Journal of the American Medical Directors Association 2015;16: 301–308 Janssen I, Heymsfield SB, Baumgartner RN et al. Estimation of skeletal muscle mass by bioelectrical impedance analysis. Journal of applied physiology 2000;89: 465–471 Janssen I, Baumgartner RN, Ross R et al. Skeletal muscle cutpoints associated with elevated physical disability risk in older men and women. American journal of epidemiology 2004;159: 413–421 Lauretani F, Russo CR, Bandinelli S et al. Age–associated changes in skeletal muscles and their effect on mobility: an operational diagnosis of sarcopenia. Journal of applied physiology 2003;95: 1851–1860 Guralnik JM, Simonsick EM, Ferrucci L et al. A short physical performance battery assessing lower extremity function: association with self–reported disability and prediction of mortality and nursing home admission. Journal of gerontology 1994;49: M85–94 Terrlink T, van Leeuwen PA, Houdijk A. Plasma amino acids determined by liquid chromatography within 17 minutes. Clin Chem 1994;40: 245–249 Olia Araghi S, van Dijk SC, Ham AC et al. BMI and Body Fat Mass Is Inversely Associated with Vitamin D Levels in Older Individuals. The journal of nutrition, health & aging 2015;19: 980–985 Sohl E, de Jongh RT, Swart KM et al. The association between vitamin D status and parameters for bone density and quality is modified by body mass index. Calcified tissue international 2015;96: 113–122 Elin RJ. Magnesium metabolism in health and disease. Disease–a–month: DM 1988;34: 161–218 Katsanos CS, Kobayashi H, Sheffield–Moore M et al. A high proportion of leucine is required for optimal stimulation of the rate of muscle protein synthesis by essential amino acids in the elderly. Am J Physiol Endocrinol Metab 2006;291: E381–387 World Health Organization. Food and Agriculture Organization of the United Nations. United Nations University, 2007. Protein and amino acid requirements in human nutrition. Report of a joint FAO/WHO/UNU expert consultation (WHO Technical Report Series 935). World Health Organization. Paddon–Jones D, Rasmussen BB. Dietary protein recommendations and the prevention of sarcopenia. Curr Opin Clin Nutr Metab Care 2009;12: 86–90 Schmidt JA, Rinaldi S, Scalbert A et al. Plasma concentrations and intakes of amino acids in male meat–eaters, fish–eaters, vegetarians and vegans: a cross–sectional analysis in the EPIC–Oxford cohort. European journal of clinical nutrition 2016;70: 306–312 Newgard CB, An J, Bain JR et al. A branched–chain amino acid–related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab 2009;9: 311–326 Shah SH, Svetkey LP, Newgard CB. Branching out for detection of type 2 diabetes. Cell Metab 2011;13: 491–492 Darmann and Cynober. Chapter 3: Approaches to study amino acid metabolism: from quantitative assays to flux assessment using stable isotopes. In: [Luc A Cynober, (ed)]] Metabolic and therapeutic aspects of amino acids in clinical nutrition, 2nd edition ed. CRC Press LLC, Washington DC, 2004 Abbatecola AM, Cherubini A, Guralnik JM et al. Plasma polyunsaturated fatty acids and age–related physical performance decline. Rejuvenation Res 2009;12: 25–32 Ross AC, Manson JE, Abrams SA et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. The Journal of clinical endocrinology and metabolism 2011;96: 53–58 Wicherts IS, van Schoor NM, Boeke AJ et al. Vitamin D status predicts physical performance and its decline in older persons. The Journal of clinical endocrinology and metabolism 2007;92: 2058–2065 Tieland M, Brouwer E, Nienaber–Rousseau C et al. Compromised vitamin D status in frail elderly people is associated with reduced muscle mass and physical performance in “Dietary strategies to augment muscle mass in the elderly”. Dissertation, Wageningen University, 2013. Kado DM, Bucur A, Selhub J et al. Homocysteine levels and decline in physical function: MacArthur Studies of Successful Aging. The American journal of medicine 2002;113: 537–542 Swart KM, van Schoor NM, Heymans MW et al. Elevated homocysteine levels are associated with low muscle strength and functional limitations in older persons. The journal of nutrition, health & aging 2013;17: 578–584 Weiss N, Keller C, Hoffmann U et al. Endothelial dysfunction and atherothrombosis in mild hyperhomocysteinemia. Vascular medicine 2002;7: 227–239