Low-Dimensional Magnetism in Namibite Cu(BiO)2VO4OH

Journal of Experimental and Theoretical Physics - Tập 137 - Trang 520-525 - 2023
L. V. Shvanskaya1,2, T. D. Bushneva1, A. G. Ivanova3, Z. V. Pchelkina4,5, T. M. Vasil’chikova1,2, O. S. Volokova1,2, A. N. Vasil’ev1,2
1Moscow State University, Moscow, Russia
2National Research Technological University MISiS, Moscow, Russia
3Federal Research Center “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, Russia
4Ural Federal University, Yekaterinburg, Russia
5Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia

Tóm tắt

A synthetic analog of rare secondary mineral namibite Cu(BiO)2VO4OH has been obtained by the hydrothermal method. The crystal structure of this compound contains isolated uniform chains of vertex-connected copper–oxygen octahedra. Magnetic susceptibility (χ) and magnetization (M) measurements have not indicated the long-range order in the temperature interval 2–300 K. Specific heat (Cp) measurements suggest the formation of a spin-liquid state at low temperatures. X-band electron paramagnetic resonance data recorded at low temperatures have demonstrated only a signal from impurities. First-principles calculations have estimated the exchange interaction in the chains as J = 555 K, whereas exchange interactions between the chains turn out to be one to two orders of magnitude smaller. Thus, namibite represents a rare example of an unordered half-integer spin chain.

Tài liệu tham khảo

A. Vasiliev, O. Volkova, E. Zvereva, and M. Markina, npj Quantum Mater. 3, 18 (2018). T. Masuda, A. Zheludev, A. Bush, et al., Phys. Rev. Lett. 92, 177201 (2004). S.-L. Drechsler, O. Volkova, A. N. Vasiliev, et al., Phys. Rev. Lett. 98, 077202 (2007). M. Isobe, E. Ninomiya, A. N. Vasiliev, and Y. Ueda, J. Phys. Soc. Jpn. 71, 1423 (2002). S.-L. Drechsler, J. Richter, A. A. Gippius, et al., Europhys. Lett. 73, 83 (2006). A. N. Vasiliev, L. A. Ponomarenko, H. Manaka, et al., Phys. Rev. B 64, 024419 (2001). A. I. Smirnov, M. N. Popova, A. B. Sushkov, et al., Phys. Rev. B 59, 14546 (1999). E. Lieb, T. Schultz, and D. Mattis, Ann. Phys. 16, 407 (1961). J. C. Bonner and M. E. Fisher, Phys. Rev. A 135, 640 (1964). O. von Knorring and T. G. Sahama, Schweiz. Miner. Petrog. 61, 7 (1981). S. M. Aksenov, V. S. Mironov, E. Yu. Borovikova, et al., Solid State Sci. 63, 16 (2017). U. Kolitsch and G. Giester, Am. Miner. 85, 1298 (2000). X. Rocquefelte, K. Schwarz, and P. Blaha, Sci. Rep. 2, 759 (2012). G. Tunell, E. Posnjak, and C. J. Ksanda, J. Wash. Acad. Sci. 23, 195 (1933). G. A. Bain and J. F. Berry, J. Chem. Educ. 85, 532 (2008). D. C. Johnston, R. K. Kremer, M. Troyer, et al., Phys. Rev. B 61, 9558 (2000). R. J. Goetsch, V. K. Anand, A. Pandey, and D. C. Johnston, Phys. Rev. B 85, 054517 (2012). A. Tari, The Specific Heat of Matter at Low Temperatures (Imperial College Press, London, 2003). J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996). G. Kresse and J. Furthmüller, Phys. Rev. 54, 11169 (1996). A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Phys. Rev. B 52, R5467(R) (1995). V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B 44, 943 (1991). H. J. Xiang, E. J. Kan, S.-H. Wei, M.-H. Whangbo, and X. G. Gong, Phys. Rev. B 84, 224429 (2011). G. Mathew, S. L. L. Silva, A. Jain, et al., Phys. Rev. Res. 2, 043329 (2020). M. Wiesniak, V. Vedral, and C. Brukner, New J. Phys. 7, 258 (2005).