Loss of wild-type Kras promotes activation of all Ras isoforms in oncogenic Kras-induced leukemogenesis

Leukemia - Tập 30 Số 7 - Trang 1542-1551 - 2016
Guangyao Kong1, Y-I Chang1, Alisa Damnernsawad1, Xiaona You1, Jie Du1, Erik A. Ranheim2, W. Lee1, M-J Ryu1, Yun Zhou1, Yu Xing1, Qing Chang3, Christin E. Burd4, Jianhua Zhang1
1McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, USA
2Department of Pathology & Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin Carbone Cancer Center, Madison, WI, USA
3Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
4Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Boguski MS, McCormick F . Proteins regulating Ras and its relatives. Nature 1993; 366: 643–654.

Quilliam LA, Rebhun JF, Castro AF . A growing family of guanine nucleotide exchange factors is responsible for activation of Ras-family GTPases. Prog Nucleic Acid Res Mol Biol 2002; 71: 391–444.

Shannon K . The Ras signaling pathway and the molecular basis of myeloid leukemogenesis. Curr Opin Hematol 1995; 2: 305–308.

Bos JL . ras oncogenes in human cancer: a review. Cancer Res 1989; 49: 4682–4689.

Cohen JB, Levinson AD . A point mutation in the last intron responsible for increased expression and transforming activity of the c-Ha-ras oncogene. Nature 1988; 334: 119–124.

Finney RE, Bishop JM . Predisposition to neoplastic transformation caused by gene replacement of H-ras1. Science 1993; 260: 1524–1527.

Bremner R, Balmain A . Genetic changes in skin tumor progression: correlation between presence of a mutant ras gene and loss of heterozygosity on mouse chromosome 7. Cell 1990; 61: 407–417.

Buchmann A, Ruggeri B, Klein-Szanto AJ, Balmain A . Progression of squamous carcinoma cells to spindle carcinomas of mouse skin is associated with an imbalance of H-ras alleles on chromosome 7. Cancer Res 1991; 51: 4097–4101.

Zhang Z, Wang Y, Vikis HG, Johnson L, Liu G, Li J et al. Wildtype Kras2 can inhibit lung carcinogenesis in mice. Nat Genet 2001; 29: 25–33.

Puyol M, Martin A, Dubus P, Mulero F, Pizcueta P, Khan G et al. A synthetic lethal interaction between K-Ras oncogenes and Cdk4 unveils a therapeutic strategy for non-small cell lung carcinoma. Cancer Cell 2010; 18: 63–73.

Xu J, Haigis KM, Firestone AJ, McNerney ME, Li Q, Davis E et al. Dominant role of oncogene dosage and absence of tumor suppressor activity in Nras-driven hematopoietic transformation. Cancer Discov 2013; 3: 993–1001.

Diaz R, Ahn D, Lopez-Barcons L, Malumbres M, Perez de Castro I, Lue J et al. The N-ras proto-oncogene can suppress the malignant phenotype in the presence or absence of its oncogene. Cancer Res 2002; 62: 4514–4518.

Wang JY, Liu YG, Li ZY, Du J, Ryu MJ, Taylor PR et al. Endogenous oncogenic Nras mutation leads to aberrant GM-CSF signaling in granulocytic/monocytic precursors in a murine model of chronic myelomonocytic leukemia. Blood 2010; 116: 5991–6002.

Wang JY, Liu YG, Li ZY, Wang ZD, Tan LX, Ryu MJ et al. Endogenous oncogenic Nras mutation initiates hematopoietic malignancies in a dose- and cell type-dependent manner. Blood 2011; 118: 368–379.

Burd CE, Liu W, Huynh MV, Waqas MA, Gillahan JE, Clark KS et al. Mutation-specific RAS oncogenicity explains NRAS codon 61 selection in melanoma. Cancer Discov 2014; 4: 1418–1429.

Zhang J, Wang J, Liu Y, Sidik H, Young KH, Lodish HF et al. Oncogenic Kras-induced leukemogeneis: hematopoietic stem cells as the initial target and lineage-specific progenitors as the potential targets for final leukemic transformation. Blood 2009; 113: 1304–1314.

Zhang J, Lodish HF . Identification of K-ras as the major regulator for cytokine-dependent Akt activation in erythroid progenitors in vivo. Proc Natl Acad Sci USA 2005; 102: 14605–14610.

Kong G, Du J, Liu Y, Meline B, Chang YI, Ranheim EA et al. Notch1 gene mutations target KRAS G12D-expressing CD8+ cells and contribute to their leukemogenic transformation. J Biol Chem 2013; 288: 18219–18227.

Sabnis AJ, Cheung LS, Dail M, Kang HC, Santaguida M, Hermiston ML et al. Oncogenic Kras initiates leukemia in hematopoietic stem cells. PLoS Biol 2009; 7: e59.

Du J, Liu Y, Meline B, Kong G, Tan LX, Lo JC et al. Loss of CD44 attenuates aberrant GM-CSF signaling in Kras G12D hematopoietic progenitor/precursor cells and prolongs the survival of diseased animals. Leukemia 2013; 27: 754–757.

Kong G, Wunderlich M, Yang D, Ranheim EA, Young KH, Wang J et al. Combined MEK and JAK inhibition abrogates murine myeloproliferative neoplasm. J Clin Invest 2014; 124: 2762–2773.

Chan IT, Kutok JL, Williams IR, Cohen S, Kelly L, Shigematsu H et al. Conditional expression of oncogenic K-ras from its endogenous promoter induces a myeloproliferative disease. J Clin Invest 2004; 113: 528–538.

Zhang J, Ding L, Holmfeldt L, Wu G, Heatley SL, Payne-Turner D et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 2012; 481: 157–163.

Staffas A, Karlsson C, Persson M, Palmqvist L, Bergo MO . Wild-type KRAS inhibits oncogenic KRAS-induced T-ALL in mice. Leukemia 2014; 29: 1032–1040.

Chang YI, You X, Kong G, Ranheim EA, Wang J, Du J et al. Loss of Dnmt3a and endogenous Kras cooperate to regulate hematopoietic stem and progenitor cell functions in leukemogenesis. Leukemia 2015; 29: 1847–1856.

Boggs DR . The total marrow mass of the mouse: a simplified method of measurement. Am J Hematol 1984; 16: 277–286.