Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer's disease correlates with increased BACE1/β-secretase expression

Sébastien S. Hébert1,2, Katrien Horré1,2, Laura Nicolaï1,2, Aikaterini S. Papadopoulou1,2, Wim Mandemakers1,2, Asli Silahtaroglu3, Sakari Kauppinen4,3, André Delacourte5, Bart De Strooper1,2
1*Center for Human Genetics, Katholieke Universiteit Leuven and
2Department of Molecular and Developmental Genetics, VIB, Herestraat 49 bus 602, B-3000 Leuven, Belgium;
3Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark;
4Santaris Pharma, Bøge Alle 3, DK-2970 Hørsholm, Denmark; and
5Institut National de la Santé et de la Recherche Médicale, U. 837, Bâtiment G. Biserte, 1 Place de Verdun, 59045 Lille Cedex, France

Tóm tắt

Although the role of APP and PSEN genes in genetic Alzheimer's disease (AD) cases is well established, fairly little is known about the molecular mechanisms affecting Aβ generation in sporadic AD. Deficiency in Aβ clearance is certainly a possibility, but increased expression of proteins like APP or BACE1/β-secretase may also be associated with the disease. We therefore investigated changes in microRNA (miRNA) expression profiles of sporadic AD patients and found that several miRNAs potentially involved in the regulation of APP and BACE1 expression appeared to be decreased in diseased brain. We show here that miR-29a, -29b-1, and -9 can regulate BACE1 expression in vitro . The miR-29a/b-1 cluster was significantly (and AD-dementia-specific) decreased in AD patients displaying abnormally high BACE1 protein. Similar correlations between expression of this cluster and BACE1 were found during brain development and in primary neuronal cultures. Finally, we provide evidence for a potential causal relationship between miR-29a/b-1 expression and Aβ generation in a cell culture model. We propose that loss of specific miRNAs can contribute to increased BACE1 and Aβ levels in sporadic AD.

Từ khóa


Tài liệu tham khảo

10.1038/ng1718

10.1038/375754a0

10.1038/376775a0

10.1146/annurev.cellbio.18.020402.142302

10.1038/nm0103-3

10.1001/archneur.59.9.1381

10.1006/exnr.2002.7875

10.1002/ana.10208

10.1523/JNEUROSCI.4396-06.2007

10.1016/j.neuron.2007.05.012

10.1073/pnas.0205689101

10.1186/gb-2004-5-9-r68

10.1186/gb-2004-5-3-r13

10.1101/gr.2845604

10.1016/j.gene.2006.11.018

10.1113/jphysiol.2006.113191

10.1038/nature04367

10.1126/science.1148530

10.1016/j.molcel.2006.07.030

10.1084/jem.20070823

10.1126/science.1140481

10.4049/jimmunol.172.10.6362

10.4161/rna.1.2.1066

10.1124/jpet.104.081174

10.1371/journal.pcbi.0010013

10.1093/nar/gkh023

10.1126/science.1136235

10.1126/science.1132341

10.1111/j.1460-9568.2005.03978.x

10.1523/JNEUROSCI.2766-05.2005

10.1074/jbc.M006947200

10.1074/jbc.M505249200

10.1016/j.pneurobio.2006.06.001

10.1073/pnas.0503839103

10.1002/glia.10178

10.1159/000101836

10.2353/ajpath.2007.060378

10.1159/000083496

10.1002/jnr.1095

10.1126/science.1115596

10.1073/pnas.0707628104

10.1016/S1568-1637(03)00013-8

10.1016/j.ydbio.2007.12.044

10.1038/nature03702

10.1097/WNR.0b013e3280148e8b

10.1038/sj.embor.7400704

10.1083/jcb.200406060

10.1016/j.nbd.2004.08.002

10.1038/nprot.2007.313

10.1523/JNEUROSCI.5065-07.2008