Loss of control of the culturable bacteria in the hindgut of Bombyx mori after Cry1Ab ingestion
Tài liệu tham khảo
Adang, 2014, Chapter two - diversity of Bacillus thuringiensis crystal toxins and mechanism of action, 39, 10.1016/B978-0-12-800197-4.00002-6
Atsumi, 2012, Single amino acid mutation in an ATP-binding cassette transporter gene causes resistance to Bt toxin Cry1Ab in the silkworm, Bombyx mori, Proc. Natl. Acad. Sci. U.S.A., 109, E1591, 10.1073/pnas.1120698109
Azuma, 2012, Two water-specific aquaporins at the apical and basal plasma membranes of insect epithelia: molecular basis for water recycling through the cryptonephric rectal complex of lepidopteran larvae, J. Insect Physiol., 58, 523, 10.1016/j.jinsphys.2012.01.007
Baxter, 2005, Novel genetic basis of field-evolved resistance to Bt toxins in Plutella xylostella, Insect Mol. Biol., 14, 327, 10.1111/j.1365-2583.2005.00563.x
Bravo, 2011, Bacillus thuringiensis: a story of a successful bioinsecticide, Insect Biochem. Mol. Biol., 41, 423, 10.1016/j.ibmb.2011.02.006
Budatha, 2007, A novel aminopeptidase in the fat body of the moth Achaea janata as a receptor for Bacillus thuringiensis Cry toxins and its comparison with midgut aminopeptidase, Biochem. J., 405, 287, 10.1042/BJ20070054
Cerstiaens, 2001, Effect of Bacillus thuringiensis Cry1 toxins in insect hemolymph and their neurotoxicity in brain cells of Lymantria dispar, Appl. Environ. Microbiol., 67, 3923, 10.1128/AEM.67.9.3923-3927.2001
DeJong, 2007, Reactive oxygen species detoxification by catalase is a major determinant of fecundity in the mosquito Anopheles gambiae, Proc. Natl. Acad. Sci. U.S.A., 104, 2121, 10.1073/pnas.0608407104
Derardja, 2019, Inhibition of apricot polyphenol oxidase by combinations of plant proteases and ascorbic acid, Food Chem. X, 4, 10.1016/j.fochx.2019.100053
Dutta, 2016, Mutation in the pro-peptide region of a cysteine protease leads to altered activity and specificity—a structural and biochemical approach, PloS One, 11, 10.1371/journal.pone.0158024
Duve, 1999, Regulation of lepidopteran foregut movement by allatostatins and allatotropin from the frontal ganglion, J. Comp. Neurol., 413, 405, 10.1002/(SICI)1096-9861(19991025)413:3<405::AID-CNE4>3.0.CO;2-R
Endo, 2018, The intracellular region of silkworm cadherin-like protein is not necessary to mediate the toxicity of Bacillus thuringiensis Cry1Aa and Cry1Ab toxins, Insect Biochem. Mol. Biol., 94, 36, 10.1016/j.ibmb.2018.01.005
Engel, 2013, The gut microbiota of insects - diversity in structure and function, FEMS Microbiol. Rev., 37, 699, 10.1111/1574-6976.12025
Fan, 2014, Comparative proteomic analysis of Bombyx mori hemocytes treated with destruxin, A. Arch. Insect Biochem. Physiol., 86, 33, 10.1002/arch.21160
Felton, 1995, Antioxidant systems in insects, Arch. Insect Biochem. Physiol., 29, 187, 10.1002/arch.940290208
Garcia-Robles, 2020, Proteomic insights into the immune response of the Colorado potato beetle larvae challenged with Bacillus thuringiensis, Dev. Comp. Immunol., 104, 10.1016/j.dci.2019.103525
Gassmann, 2014, Field-evolved resistance by western corn rootworm to multiple Bacillus thuringiensis toxins in transgenic maize, Proc. Natl. Acad. Sci. U.S.A., 111, 5141, 10.1073/pnas.1317179111
Gerber, 2018, Cold tolerance is linked to osmoregulatory function of the hindgut in Locusta migratoria, J. Exp. Biol., 221, 10.1242/jeb.173930
Höfte, 1989, Insecticidal crystal proteins of Bacillus thuringiensis, Micorbiol. Rev., 53, 242, 10.1128/MR.53.2.242-255.1989
Habeeb, 2008, Ultrastructural changes in hemocyte cells of hard tick (Hyalomma dromedarii: ixodidae): a model of Bacillus thuringiensis var. thuringiensis H14 δ-endotoxin mode of action, Am.-Eurasian J. Agric. Environ. Sci., 3, 829
James, 2003, Global review of commercialized transgenic crops, Curr. Sci., 84, 303
Jebara, 2005, Changes in ascorbate peroxidase, catalase, guaiacol peroxidase and superoxide dismutase activities in common bean (Phaseolus vulgaris) nodules under salt stress, J. Plant Physiol., 162, 929, 10.1016/j.jplph.2004.10.005
Jiao, 2016, Comparison of susceptibility of Chilo suppressalis and Bombyx mori to five Bacillus thuringiensis proteins, J. Invertebr. Pathol., 136, 95, 10.1016/j.jip.2016.03.010
Khare, 1974, Metamorphosis of the cryptonephric malpighian tubules of Corcyra cephalonica staint. (Lepidoptera: pyralididae), Int. J. Insect Morphol. Embryol., 3, 163, 10.1016/0020-7322(74)90014-2
Kumar, 2003, The role of reactive oxygen species on Plasmodium melanotic encapsulation in Anopheles gambiae, Proc. Natl. Acad. Sci. U.S.A., 100, 14139, 10.1073/pnas.2036262100
Ladislav, 2015, Orcokinin-like immunoreactivity in central neurons innervating the salivary glands and hindgut of ixodid ticks, Cell Tissue Res., 360, 209, 10.1007/s00441-015-2121-z
Li, 2007, Increasing tolerance to Cry1Ac cotton from cotton bollworm, Helicoverpa armigera, was confirmed in Bt cotton farming area of China, Ecol. Entomol., 32, 366, 10.1111/j.1365-2311.2007.00891.x
Li, 2012, Properties of Drosophila melanogaster prophenoloxidases expressed in Escherichia coli, Dev. Comp. Immunol., 36, 648, 10.1016/j.dci.2011.11.005
Li, 2009, Crystal structure of Manduca sexta prophenoloxidase provides insights into the mechanism of type 3 copper enzymes, Proc. Natl. Acad. Sci. U.S.A., 106, 17002, 10.1073/pnas.0906095106
Ling, 2019, Baculoviral infection reduces the expression of four allergen proteins of silkworm pupa, Arch. Insect Biochem. Physiol., 100, 10.1002/arch.21539
Lu, 2014, Recombinant Drosophila prophenoloxidase 1 is sequentially cleaved by alpha-chymotrypsin during in vitro activation, Biochimie, 102, 154, 10.1016/j.biochi.2014.03.007
Lu, 2014, Insect prophenoloxidase: the view beyond immunity, Front. Physiol., 5, 252, 10.3389/fphys.2014.00252
Luan, 2015, The putative Na+/Cl--dependent neurotransmitter/osmolyte transporter inebriated in the Drosophila hindgut is essential for the maintenance of systemic water homeostasis, Sci. Rep., 5, 7993, 10.1038/srep07993
Meekins, 2017, Serpins in arthropod biology, Semin. Cell Dev. Biol., 62, 105, 10.1016/j.semcdb.2016.09.001
Miranda, 2001, Processing of Cry1Ab δ-endotoxin from Bacillus thuringiensis by Manduca sexta and Spodoptera frugiperda midgut proteases: role in protoxin activation and toxin inactivation, Insect Biochem. Mol. Biol., 31, 1156, 10.1016/S0965-1748(01)00061-3
Molina-Cruz, 2008, Reactive oxygen species modulate Anopheles gambiae immunity against bacteria and Plasmodium, J. Biol. Chem., 283, 3217, 10.1074/jbc.M705873200
Nappi, 2000, Cytotoxicity and cytotoxic molecules in invertebrates, Bioessays, 22, 469, 10.1002/(SICI)1521-1878(200005)22:5<469::AID-BIES9>3.0.CO;2-4
Ningshen, 2013, Characterization and regulation of Bacillus thuringiensis Cry toxin binding aminopeptidases N (APNs) from non-gut visceral tissues, Malpighian tubule and salivary gland: comparison with midgut-specific APN in the moth Achaea janata, Comp. Biochem. Physiol. B Biochem. Mol. Biol., 166, 194, 10.1016/j.cbpb.2013.09.005
Nishimura, 1986, Blood level of mitochondrial aspartate-aminotransferase as an indicator of the extent of ischemic necrosis of the rat-liver, Hepatology, 6, 701, 10.1002/hep.1840060427
Palma, 2014, Bacillus thuringiensis toxins: an overview of their biocidal activity, Toxins, 6, 3296, 10.3390/toxins6123296
Phillips, 1995, Neuropeptide control of ion and fluid transport across locust hindgut, Am. Zool., 35, 503, 10.1093/icb/35.6.503
Phillips, 1987, Mechanisms and control of reabsorption in insect hindgut, Adv. Insect Physiol, 19, 329, 10.1016/S0065-2806(08)60103-4
Prabu, 2020, Contribution of phenoloxidase activation mechanism to Bt insecticidal protein resistance in Asian corn borer, Int. J. Biol. Macromol., 153, 88, 10.1016/j.ijbiomac.2020.03.003
Robertson, 2014, Allatostatin A-like immunoreactivity in the nervous system and gut of the larval midge Chironomus riparius: modulation of hindgut motility, rectal K+ transport and implications for exposure to salinity, J. Exp. Biol., 217, 3815, 10.1242/jeb.108985
Ruiz-Sanchez, 2015, The insect excretory system as a target for novel pest control strategies, Curr. Opin. Insect Sci., 11, 14, 10.1016/j.cois.2015.08.002
Shao, 2012, Hindgut innate immunity and regulation of fecal microbiota through melanization in insects, J. Biol. Chem., 287, 14270, 10.1074/jbc.M112.354548
Shen, 2010, Colloid chitin azure is a dispersible, low-cost substrate for chitinase measurements in a sensitive, fast, reproducible assay, J. Biomol. Screen, 15, 213, 10.1177/1087057109355057
Srivastava, 1966, The development of Malpighian tubules and associated structures in Philosamia ricini (Lepidoptera, Saturnidae), J. Zool., 150, 145, 10.1111/j.1469-7998.1966.tb03001.x
Tabashnik, 2013, Insect resistance to Bt crops: lessons from the first billion acres, Nat. Biotechnol., 31, 510, 10.1038/nbt.2597
Tabashnik, 2017, Surge in insect resistance to transgenic crops and prospects for sustainability, Nat. Biotechnol., 35, 926, 10.1038/nbt.3974
Tan, 2003, Identification of novel tissue-specific proteins in the suboesophageal body of the silkworm, Bombyx mori, J. Insect Biotechnol. Sericol., 72, 41
Tanaka, 2016, Functional characterization of Bacillus thuringiensis Cry toxin receptors explains resistance in insects, FEBS J., 283, 4474, 10.1111/febs.13952
Tanaka, 2013, The ATP-binding cassette transporter subfamily C member 2 in Bombyx mori larvae is a functional receptor for Cry toxins from Bacillus thuringiensis, FEBS J., 280, 1782, 10.1111/febs.12200
Tanaka, 2012, Response of midgut epithelial cells to Cry1Aa is toxin-dependent and depends on the interplay between toxic action and the host apoptotic response, FEBS J., 279, 1071, 10.1111/j.1742-4658.2012.08499.x
Trumm, 2000, Effects of azadirachtin on the regulation of midgut peristalsis by the stomatogastric nervous system in Locusta migratoria, Phytoparasitica, 28, 7, 10.1007/BF02994020
Valaitis, 2008, Bacillus thuringiensis pore-forming toxins trigger massive shedding of GPI-anchored aminopeptidase N from gypsy moth midgut epithelial cells, Insect Biochem. Mol. Biol., 38, 611, 10.1016/j.ibmb.2008.03.003
Wang, 2019, Peptidoglycan recognition proteins in insect immunity, Mol. Immunol., 106, 69, 10.1016/j.molimm.2018.12.021
Wu, 2016, Gut immunity in Lepidopteran insects, Dev. Comp. Immunol., 64, 65, 10.1016/j.dci.2016.02.010
Yu, 2017, iTRAQ-based quantitative proteomics analysis of molecular mechanisms associated with Bombyx mori (Lepidoptera) larval midgut response to BmNPV in susceptible and near-isogenic strains, J. Proteomics, 165, 35, 10.1016/j.jprot.2017.06.007
Zhang, 2017, Prophenoloxidase-mediated ex vivo immunity to delay fungal infection after insect ecdysis, Front. Immunol., 8, 1445, 10.3389/fimmu.2017.01445
Zhang, 2014, Functional analysis of insect molting fluid proteins on the protection and regulation of ecdysis, J. Biol. Chem., 289, 35891, 10.1074/jbc.M114.599597