Loss of control of the culturable bacteria in the hindgut of Bombyx mori after Cry1Ab ingestion

Developmental & Comparative Immunology - Tập 111 - Trang 103754 - 2020
Kai Wu1,2, Jing Wang1, Lei Geng2, Kai Chen1, Wuren Huang2, Qiuning Liu2, Brenda T. Beerntsen3, Erjun Ling2,4
1College of Life Sciences, Shangrao Normal University, Shangrao, China
2Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, China
3Veterinary Pathobiology, 213 Connaway Hall, University of Missouri Columbia, MO, 65211, USA
4Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100093, China

Tài liệu tham khảo

Adang, 2014, Chapter two - diversity of Bacillus thuringiensis crystal toxins and mechanism of action, 39, 10.1016/B978-0-12-800197-4.00002-6 Atsumi, 2012, Single amino acid mutation in an ATP-binding cassette transporter gene causes resistance to Bt toxin Cry1Ab in the silkworm, Bombyx mori, Proc. Natl. Acad. Sci. U.S.A., 109, E1591, 10.1073/pnas.1120698109 Azuma, 2012, Two water-specific aquaporins at the apical and basal plasma membranes of insect epithelia: molecular basis for water recycling through the cryptonephric rectal complex of lepidopteran larvae, J. Insect Physiol., 58, 523, 10.1016/j.jinsphys.2012.01.007 Baxter, 2005, Novel genetic basis of field-evolved resistance to Bt toxins in Plutella xylostella, Insect Mol. Biol., 14, 327, 10.1111/j.1365-2583.2005.00563.x Bravo, 2011, Bacillus thuringiensis: a story of a successful bioinsecticide, Insect Biochem. Mol. Biol., 41, 423, 10.1016/j.ibmb.2011.02.006 Budatha, 2007, A novel aminopeptidase in the fat body of the moth Achaea janata as a receptor for Bacillus thuringiensis Cry toxins and its comparison with midgut aminopeptidase, Biochem. J., 405, 287, 10.1042/BJ20070054 Cerstiaens, 2001, Effect of Bacillus thuringiensis Cry1 toxins in insect hemolymph and their neurotoxicity in brain cells of Lymantria dispar, Appl. Environ. Microbiol., 67, 3923, 10.1128/AEM.67.9.3923-3927.2001 DeJong, 2007, Reactive oxygen species detoxification by catalase is a major determinant of fecundity in the mosquito Anopheles gambiae, Proc. Natl. Acad. Sci. U.S.A., 104, 2121, 10.1073/pnas.0608407104 Derardja, 2019, Inhibition of apricot polyphenol oxidase by combinations of plant proteases and ascorbic acid, Food Chem. X, 4, 10.1016/j.fochx.2019.100053 Dutta, 2016, Mutation in the pro-peptide region of a cysteine protease leads to altered activity and specificity—a structural and biochemical approach, PloS One, 11, 10.1371/journal.pone.0158024 Duve, 1999, Regulation of lepidopteran foregut movement by allatostatins and allatotropin from the frontal ganglion, J. Comp. Neurol., 413, 405, 10.1002/(SICI)1096-9861(19991025)413:3<405::AID-CNE4>3.0.CO;2-R Endo, 2018, The intracellular region of silkworm cadherin-like protein is not necessary to mediate the toxicity of Bacillus thuringiensis Cry1Aa and Cry1Ab toxins, Insect Biochem. Mol. Biol., 94, 36, 10.1016/j.ibmb.2018.01.005 Engel, 2013, The gut microbiota of insects - diversity in structure and function, FEMS Microbiol. Rev., 37, 699, 10.1111/1574-6976.12025 Fan, 2014, Comparative proteomic analysis of Bombyx mori hemocytes treated with destruxin, A. Arch. Insect Biochem. Physiol., 86, 33, 10.1002/arch.21160 Felton, 1995, Antioxidant systems in insects, Arch. Insect Biochem. Physiol., 29, 187, 10.1002/arch.940290208 Garcia-Robles, 2020, Proteomic insights into the immune response of the Colorado potato beetle larvae challenged with Bacillus thuringiensis, Dev. Comp. Immunol., 104, 10.1016/j.dci.2019.103525 Gassmann, 2014, Field-evolved resistance by western corn rootworm to multiple Bacillus thuringiensis toxins in transgenic maize, Proc. Natl. Acad. Sci. U.S.A., 111, 5141, 10.1073/pnas.1317179111 Gerber, 2018, Cold tolerance is linked to osmoregulatory function of the hindgut in Locusta migratoria, J. Exp. Biol., 221, 10.1242/jeb.173930 Höfte, 1989, Insecticidal crystal proteins of Bacillus thuringiensis, Micorbiol. Rev., 53, 242, 10.1128/MR.53.2.242-255.1989 Habeeb, 2008, Ultrastructural changes in hemocyte cells of hard tick (Hyalomma dromedarii: ixodidae): a model of Bacillus thuringiensis var. thuringiensis H14 δ-endotoxin mode of action, Am.-Eurasian J. Agric. Environ. Sci., 3, 829 James, 2003, Global review of commercialized transgenic crops, Curr. Sci., 84, 303 Jebara, 2005, Changes in ascorbate peroxidase, catalase, guaiacol peroxidase and superoxide dismutase activities in common bean (Phaseolus vulgaris) nodules under salt stress, J. Plant Physiol., 162, 929, 10.1016/j.jplph.2004.10.005 Jiao, 2016, Comparison of susceptibility of Chilo suppressalis and Bombyx mori to five Bacillus thuringiensis proteins, J. Invertebr. Pathol., 136, 95, 10.1016/j.jip.2016.03.010 Khare, 1974, Metamorphosis of the cryptonephric malpighian tubules of Corcyra cephalonica staint. (Lepidoptera: pyralididae), Int. J. Insect Morphol. Embryol., 3, 163, 10.1016/0020-7322(74)90014-2 Kumar, 2003, The role of reactive oxygen species on Plasmodium melanotic encapsulation in Anopheles gambiae, Proc. Natl. Acad. Sci. U.S.A., 100, 14139, 10.1073/pnas.2036262100 Ladislav, 2015, Orcokinin-like immunoreactivity in central neurons innervating the salivary glands and hindgut of ixodid ticks, Cell Tissue Res., 360, 209, 10.1007/s00441-015-2121-z Li, 2007, Increasing tolerance to Cry1Ac cotton from cotton bollworm, Helicoverpa armigera, was confirmed in Bt cotton farming area of China, Ecol. Entomol., 32, 366, 10.1111/j.1365-2311.2007.00891.x Li, 2012, Properties of Drosophila melanogaster prophenoloxidases expressed in Escherichia coli, Dev. Comp. Immunol., 36, 648, 10.1016/j.dci.2011.11.005 Li, 2009, Crystal structure of Manduca sexta prophenoloxidase provides insights into the mechanism of type 3 copper enzymes, Proc. Natl. Acad. Sci. U.S.A., 106, 17002, 10.1073/pnas.0906095106 Ling, 2019, Baculoviral infection reduces the expression of four allergen proteins of silkworm pupa, Arch. Insect Biochem. Physiol., 100, 10.1002/arch.21539 Lu, 2014, Recombinant Drosophila prophenoloxidase 1 is sequentially cleaved by alpha-chymotrypsin during in vitro activation, Biochimie, 102, 154, 10.1016/j.biochi.2014.03.007 Lu, 2014, Insect prophenoloxidase: the view beyond immunity, Front. Physiol., 5, 252, 10.3389/fphys.2014.00252 Luan, 2015, The putative Na+/Cl--dependent neurotransmitter/osmolyte transporter inebriated in the Drosophila hindgut is essential for the maintenance of systemic water homeostasis, Sci. Rep., 5, 7993, 10.1038/srep07993 Meekins, 2017, Serpins in arthropod biology, Semin. Cell Dev. Biol., 62, 105, 10.1016/j.semcdb.2016.09.001 Miranda, 2001, Processing of Cry1Ab δ-endotoxin from Bacillus thuringiensis by Manduca sexta and Spodoptera frugiperda midgut proteases: role in protoxin activation and toxin inactivation, Insect Biochem. Mol. Biol., 31, 1156, 10.1016/S0965-1748(01)00061-3 Molina-Cruz, 2008, Reactive oxygen species modulate Anopheles gambiae immunity against bacteria and Plasmodium, J. Biol. Chem., 283, 3217, 10.1074/jbc.M705873200 Nappi, 2000, Cytotoxicity and cytotoxic molecules in invertebrates, Bioessays, 22, 469, 10.1002/(SICI)1521-1878(200005)22:5<469::AID-BIES9>3.0.CO;2-4 Ningshen, 2013, Characterization and regulation of Bacillus thuringiensis Cry toxin binding aminopeptidases N (APNs) from non-gut visceral tissues, Malpighian tubule and salivary gland: comparison with midgut-specific APN in the moth Achaea janata, Comp. Biochem. Physiol. B Biochem. Mol. Biol., 166, 194, 10.1016/j.cbpb.2013.09.005 Nishimura, 1986, Blood level of mitochondrial aspartate-aminotransferase as an indicator of the extent of ischemic necrosis of the rat-liver, Hepatology, 6, 701, 10.1002/hep.1840060427 Palma, 2014, Bacillus thuringiensis toxins: an overview of their biocidal activity, Toxins, 6, 3296, 10.3390/toxins6123296 Phillips, 1995, Neuropeptide control of ion and fluid transport across locust hindgut, Am. Zool., 35, 503, 10.1093/icb/35.6.503 Phillips, 1987, Mechanisms and control of reabsorption in insect hindgut, Adv. Insect Physiol, 19, 329, 10.1016/S0065-2806(08)60103-4 Prabu, 2020, Contribution of phenoloxidase activation mechanism to Bt insecticidal protein resistance in Asian corn borer, Int. J. Biol. Macromol., 153, 88, 10.1016/j.ijbiomac.2020.03.003 Robertson, 2014, Allatostatin A-like immunoreactivity in the nervous system and gut of the larval midge Chironomus riparius: modulation of hindgut motility, rectal K+ transport and implications for exposure to salinity, J. Exp. Biol., 217, 3815, 10.1242/jeb.108985 Ruiz-Sanchez, 2015, The insect excretory system as a target for novel pest control strategies, Curr. Opin. Insect Sci., 11, 14, 10.1016/j.cois.2015.08.002 Shao, 2012, Hindgut innate immunity and regulation of fecal microbiota through melanization in insects, J. Biol. Chem., 287, 14270, 10.1074/jbc.M112.354548 Shen, 2010, Colloid chitin azure is a dispersible, low-cost substrate for chitinase measurements in a sensitive, fast, reproducible assay, J. Biomol. Screen, 15, 213, 10.1177/1087057109355057 Srivastava, 1966, The development of Malpighian tubules and associated structures in Philosamia ricini (Lepidoptera, Saturnidae), J. Zool., 150, 145, 10.1111/j.1469-7998.1966.tb03001.x Tabashnik, 2013, Insect resistance to Bt crops: lessons from the first billion acres, Nat. Biotechnol., 31, 510, 10.1038/nbt.2597 Tabashnik, 2017, Surge in insect resistance to transgenic crops and prospects for sustainability, Nat. Biotechnol., 35, 926, 10.1038/nbt.3974 Tan, 2003, Identification of novel tissue-specific proteins in the suboesophageal body of the silkworm, Bombyx mori, J. Insect Biotechnol. Sericol., 72, 41 Tanaka, 2016, Functional characterization of Bacillus thuringiensis Cry toxin receptors explains resistance in insects, FEBS J., 283, 4474, 10.1111/febs.13952 Tanaka, 2013, The ATP-binding cassette transporter subfamily C member 2 in Bombyx mori larvae is a functional receptor for Cry toxins from Bacillus thuringiensis, FEBS J., 280, 1782, 10.1111/febs.12200 Tanaka, 2012, Response of midgut epithelial cells to Cry1Aa is toxin-dependent and depends on the interplay between toxic action and the host apoptotic response, FEBS J., 279, 1071, 10.1111/j.1742-4658.2012.08499.x Trumm, 2000, Effects of azadirachtin on the regulation of midgut peristalsis by the stomatogastric nervous system in Locusta migratoria, Phytoparasitica, 28, 7, 10.1007/BF02994020 Valaitis, 2008, Bacillus thuringiensis pore-forming toxins trigger massive shedding of GPI-anchored aminopeptidase N from gypsy moth midgut epithelial cells, Insect Biochem. Mol. Biol., 38, 611, 10.1016/j.ibmb.2008.03.003 Wang, 2019, Peptidoglycan recognition proteins in insect immunity, Mol. Immunol., 106, 69, 10.1016/j.molimm.2018.12.021 Wu, 2016, Gut immunity in Lepidopteran insects, Dev. Comp. Immunol., 64, 65, 10.1016/j.dci.2016.02.010 Yu, 2017, iTRAQ-based quantitative proteomics analysis of molecular mechanisms associated with Bombyx mori (Lepidoptera) larval midgut response to BmNPV in susceptible and near-isogenic strains, J. Proteomics, 165, 35, 10.1016/j.jprot.2017.06.007 Zhang, 2017, Prophenoloxidase-mediated ex vivo immunity to delay fungal infection after insect ecdysis, Front. Immunol., 8, 1445, 10.3389/fimmu.2017.01445 Zhang, 2014, Functional analysis of insect molting fluid proteins on the protection and regulation of ecdysis, J. Biol. Chem., 289, 35891, 10.1074/jbc.M114.599597