Loss of SMPD4 Causes a Developmental Disorder Characterized by Microcephaly and Congenital Arthrogryposis

The American Journal of Human Genetics - Tập 105 - Trang 689-705 - 2019
Pamela Magini1, Daphne J. Smits2, Laura Vandervore2,3, Rachel Schot2, Marta Columbaro4, Esmee Kasteleijn2, Mees van der Ent5, Flavia Palombo6, Maarten H. Lequin7, Marjolein Dremmen8, Marie Claire Y. de Wit9, Mariasavina Severino10, Maria Teresa Divizia11, Pasquale Striano12,13, Natalia Ordonez-Herrera14, Amal Alhashem15,16, Ahmed Al Fares15,16, Malak Al Ghamdi17, Arndt Rolfs14, Peter Bauer14
1Medical Genetics Unit, S.Orsola-Malpighi Hospital, via Massarenti 9, 40138 Bologna, Italy
2Department of Clinical Genetics, ErasmusMC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
3Vrije Universiteit Brussel, Centrum Medische Genetica, Laarbeeklaan 101, 1090 Brussels, Belgium
4Laboratory of Musculoskeletal Cell Biology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
5Department of Cell Biology, ErasmusMC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
6IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, 40139 Bologna, Italy
7Department of Radiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
8Department of Radiology, Sophia Children’s hospital, ErasmusMC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
9Department of Child Neurology, Sophia Children’s hospital, ErasmusMC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
10Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
11UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
12Pediatric Neurology and Muscular diseases Unit, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
13Department of neursciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, 16126 Genova, Italy
14CENTOGENE AG. Am Strande 7, 18055 Rostock, Germany
15Department of Pediatrics, Prince Sultan Military Medical City, Riyadh 12233, Saudi Arabia
16Department of Pediatrics, College of Medicine, Qassim University, Qassim 52571, Saudi Arabia
17Department of Pediatrics, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia

Tài liệu tham khảo

Breslow, 2013, Sphingolipid homeostasis in the endoplasmic reticulum and beyond, Cold Spring Harb. Perspect. Biol., 5, a013326, 10.1101/cshperspect.a013326 Olsen, 2017, Sphingolipids: membrane microdomains in brain development, function and neurological diseases, Open Biol., 7, 7, 10.1098/rsob.170069 Bienias, 2016, Regulation of sphingomyelin metabolism, Pharmacol. Rep., 68, 570, 10.1016/j.pharep.2015.12.008 Corcoran, 2008, Neutral sphingomyelinase-3 is a DNA damage and nongenotoxic stress-regulated gene that is deregulated in human malignancies, Mol. Cancer Res., 6, 795, 10.1158/1541-7786.MCR-07-2097 Krut, 2006, Novel tumor necrosis factor-responsive mammalian neutral sphingomyelinase-3 is a C-tail-anchored protein, J. Biol. Chem., 281, 13784, 10.1074/jbc.M511306200 Moylan, 2014, Neutral sphingomyelinase-3 mediates TNF-stimulated oxidant activity in skeletal muscle, Redox Biol., 2, 910, 10.1016/j.redox.2014.07.006 Dreger, 2001, Nuclear envelope proteomics: novel integral membrane proteins of the inner nuclear membrane, Proc. Natl. Acad. Sci. USA, 98, 11943, 10.1073/pnas.211201898 Schirmer, 2003, Nuclear membrane proteins with potential disease links found by subtractive proteomics, Science, 301, 1380, 10.1126/science.1088176 Stoffel, 2016, Neutral sphingomyelinase (SMPD3) deficiency disrupts the Golgi secretory pathway and causes growth inhibition, Cell Death Dis., 7, e2488, 10.1038/cddis.2016.385 Sobreira, 2015, GeneMatcher: a matching tool for connecting investigators with an interest in the same gene, Hum. Mutat., 36, 928, 10.1002/humu.22844 Vandervore, 2019, Heterogeneous clinical phenotypes and cerebral malformations reflected by rotatin cellular dynamics, Brain, 142, 867, 10.1093/brain/awz045 Kircher, 2014, A general framework for estimating the relative pathogenicity of human genetic variants, Nat. Genet., 46, 310, 10.1038/ng.2892 Huang, 2009, Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists, Nucleic Acids Res., 37, 1, 10.1093/nar/gkn923 Huang, 2009, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources, Nat. Protoc., 4, 44, 10.1038/nprot.2008.211 Subramanian, 2017, A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles, Cell, 171, 1437, 10.1016/j.cell.2017.10.049 Hetz, 2012, The unfolded protein response: controlling cell fate decisions under ER stress and beyond, Nat. Rev. Mol. Cell Biol., 13, 89, 10.1038/nrm3270 Atilla-Gokcumen, 2014, Dividing cells regulate their lipid composition and localization, Cell, 156, 428, 10.1016/j.cell.2013.12.015 Smolewski, 2002, Assay of caspase activation in situ combined with probing plasma membrane integrity to detect three distinct stages of apoptosis, J. Immunol. Methods, 265, 111, 10.1016/S0022-1759(02)00074-1 Alcantara, 2014, Congenital microcephaly, Am. J. Med. Genet. C. Semin. Med. Genet., 166C, 124, 10.1002/ajmg.c.31397 Doobin, 2017, Microcephaly as a cell cycle disease, Cell Cycle, 16, 247, 10.1080/15384101.2016.1252591 Nano, 2017, Consequences of Centrosome Dysfunction During Brain Development, Adv. Exp. Med. Biol., 1002, 19, 10.1007/978-3-319-57127-0_2 Megraw, 2011, Cdk5rap2 exposes the centrosomal root of microcephaly syndromes, Trends Cell Biol., 21, 470, 10.1016/j.tcb.2011.04.007 Morris-Rosendahl, 2015, What next-generation sequencing (NGS) technology has enabled us to learn about primary autosomal recessive microcephaly (MCPH), Mol. Cell. Probes, 29, 271, 10.1016/j.mcp.2015.05.015 Desikan, 2016, Malformations of cortical development, Ann. Neurol., 80, 797, 10.1002/ana.24793 Halperin, 2019, SEC31A mutation affects ER homeostasis, causing a neurological syndrome, J. Med. Genet., 56, 139, 10.1136/jmedgenet-2018-105503 Braun, 2017, Mutations in KEOPS-complex genes cause nephrotic syndrome with primary microcephaly, Nat. Genet., 49, 1529, 10.1038/ng.3933 Gladwyn-Ng, 2018, Stress-induced unfolded protein response contributes to Zika virus-associated microcephaly, Nat. Neurosci., 21, 63, 10.1038/s41593-017-0038-4 Cho, 2009, Induction of unfolded protein response during neuronal induction of rat bone marrow stromal cells and mouse embryonic stem cells, Exp. Mol. Med., 41, 440, 10.3858/emm.2009.41.6.049 Laguesse, 2015, A Dynamic Unfolded Protein Response Contributes to the Control of Cortical Neurogenesis, Dev. Cell, 35, 553, 10.1016/j.devcel.2015.11.005 Rutkowski, 2007, That which does not kill me makes me stronger: adapting to chronic ER stress, Trends Biochem. Sci., 32, 469, 10.1016/j.tibs.2007.09.003 Ryoo, 2016, Long and short (timeframe) of endoplasmic reticulum stress-induced cell death, FEBS J., 283, 3718, 10.1111/febs.13755 Smith, 2017, ER homeostasis and autophagy, Essays Biochem., 61, 625, 10.1042/EBC20170092 Orfali, 2015, Induction of autophagy is a key component of all-trans-retinoic acid-induced differentiation in leukemia cells and a potential target for pharmacologic modulation, Exp. Hematol., 43, 10.1016/j.exphem.2015.04.012 Rajawat, 2010, Autophagy: a target for retinoic acids, Autophagy, 6, 1224, 10.4161/auto.6.8.13793 Zhou, 2016, Retinoic Acid Induced-Autophagic Flux Inhibits ER-Stress Dependent Apoptosis and Prevents Disruption of Blood-Spinal Cord Barrier after Spinal Cord Injury, Int. J. Biol. Sci., 12, 87, 10.7150/ijbs.13229 Bartke, 2009, Bioactive sphingolipids: metabolism and function, J. Lipid Res., 50, S91, 10.1194/jlr.R800080-JLR200 Bieberich, 2011, Ceramide in stem cell differentiation and embryo development: novel functions of a topological cell-signaling lipid and the concept of ceramide compartments, J. Lipids, 2011, 610306 Mendelson, 2014, Sphingosine 1-phosphate signalling, Development, 141, 5, 10.1242/dev.094805 Mizugishi, 2005, Essential role for sphingosine kinases in neural and vascular development, Mol. Cell. Biol., 25, 11113, 10.1128/MCB.25.24.11113-11121.2005 Bamborschke, 2018, A novel mutation in sphingosine-1-phosphate lyase causing congenital brain malformation, Brain Dev., 40, 480, 10.1016/j.braindev.2018.02.008 Suresh, 2019, Poring over chromosomes: mitotic nuclear pore complex segregation, Curr. Opin. Cell Biol., 58, 42, 10.1016/j.ceb.2019.01.002 Lupu, 2008, Nuclear pore composition regulates neural stem/progenitor cell differentiation in the mouse embryo, Dev. Cell, 14, 831, 10.1016/j.devcel.2008.03.011 Rasala, 2006, ELYS is a dual nucleoporin/kinetochore protein required for nuclear pore assembly and proper cell division, Proc. Natl. Acad. Sci. USA, 103, 17801, 10.1073/pnas.0608484103 Zuccolo, 2007, The human Nup107-160 nuclear pore subcomplex contributes to proper kinetochore functions, EMBO J., 26, 1853, 10.1038/sj.emboj.7601642 Hein, 2015, A human interactome in three quantitative dimensions organized by stoichiometries and abundances, Cell, 163, 712, 10.1016/j.cell.2015.09.053 Fujita, 2018, Homozygous splicing mutation in NUP133 causes Galloway-Mowat syndrome, Ann. Neurol., 84, 814, 10.1002/ana.25370 Rosti, 2017, Homozygous mutation in NUP107 leads to microcephaly with steroid-resistant nephrotic condition similar to Galloway-Mowat syndrome, J. Med. Genet., 54, 399, 10.1136/jmedgenet-2016-104237 Ungricht, 2017, Mechanisms and functions of nuclear envelope remodelling, Nat. Rev. Mol. Cell Biol., 18, 229, 10.1038/nrm.2016.153 Kwasny, 2012