Loss of SMPD4 Causes a Developmental Disorder Characterized by Microcephaly and Congenital Arthrogryposis
Tài liệu tham khảo
Breslow, 2013, Sphingolipid homeostasis in the endoplasmic reticulum and beyond, Cold Spring Harb. Perspect. Biol., 5, a013326, 10.1101/cshperspect.a013326
Olsen, 2017, Sphingolipids: membrane microdomains in brain development, function and neurological diseases, Open Biol., 7, 7, 10.1098/rsob.170069
Bienias, 2016, Regulation of sphingomyelin metabolism, Pharmacol. Rep., 68, 570, 10.1016/j.pharep.2015.12.008
Corcoran, 2008, Neutral sphingomyelinase-3 is a DNA damage and nongenotoxic stress-regulated gene that is deregulated in human malignancies, Mol. Cancer Res., 6, 795, 10.1158/1541-7786.MCR-07-2097
Krut, 2006, Novel tumor necrosis factor-responsive mammalian neutral sphingomyelinase-3 is a C-tail-anchored protein, J. Biol. Chem., 281, 13784, 10.1074/jbc.M511306200
Moylan, 2014, Neutral sphingomyelinase-3 mediates TNF-stimulated oxidant activity in skeletal muscle, Redox Biol., 2, 910, 10.1016/j.redox.2014.07.006
Dreger, 2001, Nuclear envelope proteomics: novel integral membrane proteins of the inner nuclear membrane, Proc. Natl. Acad. Sci. USA, 98, 11943, 10.1073/pnas.211201898
Schirmer, 2003, Nuclear membrane proteins with potential disease links found by subtractive proteomics, Science, 301, 1380, 10.1126/science.1088176
Stoffel, 2016, Neutral sphingomyelinase (SMPD3) deficiency disrupts the Golgi secretory pathway and causes growth inhibition, Cell Death Dis., 7, e2488, 10.1038/cddis.2016.385
Sobreira, 2015, GeneMatcher: a matching tool for connecting investigators with an interest in the same gene, Hum. Mutat., 36, 928, 10.1002/humu.22844
Vandervore, 2019, Heterogeneous clinical phenotypes and cerebral malformations reflected by rotatin cellular dynamics, Brain, 142, 867, 10.1093/brain/awz045
Kircher, 2014, A general framework for estimating the relative pathogenicity of human genetic variants, Nat. Genet., 46, 310, 10.1038/ng.2892
Huang, 2009, Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists, Nucleic Acids Res., 37, 1, 10.1093/nar/gkn923
Huang, 2009, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources, Nat. Protoc., 4, 44, 10.1038/nprot.2008.211
Subramanian, 2017, A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles, Cell, 171, 1437, 10.1016/j.cell.2017.10.049
Hetz, 2012, The unfolded protein response: controlling cell fate decisions under ER stress and beyond, Nat. Rev. Mol. Cell Biol., 13, 89, 10.1038/nrm3270
Atilla-Gokcumen, 2014, Dividing cells regulate their lipid composition and localization, Cell, 156, 428, 10.1016/j.cell.2013.12.015
Smolewski, 2002, Assay of caspase activation in situ combined with probing plasma membrane integrity to detect three distinct stages of apoptosis, J. Immunol. Methods, 265, 111, 10.1016/S0022-1759(02)00074-1
Alcantara, 2014, Congenital microcephaly, Am. J. Med. Genet. C. Semin. Med. Genet., 166C, 124, 10.1002/ajmg.c.31397
Doobin, 2017, Microcephaly as a cell cycle disease, Cell Cycle, 16, 247, 10.1080/15384101.2016.1252591
Nano, 2017, Consequences of Centrosome Dysfunction During Brain Development, Adv. Exp. Med. Biol., 1002, 19, 10.1007/978-3-319-57127-0_2
Megraw, 2011, Cdk5rap2 exposes the centrosomal root of microcephaly syndromes, Trends Cell Biol., 21, 470, 10.1016/j.tcb.2011.04.007
Morris-Rosendahl, 2015, What next-generation sequencing (NGS) technology has enabled us to learn about primary autosomal recessive microcephaly (MCPH), Mol. Cell. Probes, 29, 271, 10.1016/j.mcp.2015.05.015
Desikan, 2016, Malformations of cortical development, Ann. Neurol., 80, 797, 10.1002/ana.24793
Halperin, 2019, SEC31A mutation affects ER homeostasis, causing a neurological syndrome, J. Med. Genet., 56, 139, 10.1136/jmedgenet-2018-105503
Braun, 2017, Mutations in KEOPS-complex genes cause nephrotic syndrome with primary microcephaly, Nat. Genet., 49, 1529, 10.1038/ng.3933
Gladwyn-Ng, 2018, Stress-induced unfolded protein response contributes to Zika virus-associated microcephaly, Nat. Neurosci., 21, 63, 10.1038/s41593-017-0038-4
Cho, 2009, Induction of unfolded protein response during neuronal induction of rat bone marrow stromal cells and mouse embryonic stem cells, Exp. Mol. Med., 41, 440, 10.3858/emm.2009.41.6.049
Laguesse, 2015, A Dynamic Unfolded Protein Response Contributes to the Control of Cortical Neurogenesis, Dev. Cell, 35, 553, 10.1016/j.devcel.2015.11.005
Rutkowski, 2007, That which does not kill me makes me stronger: adapting to chronic ER stress, Trends Biochem. Sci., 32, 469, 10.1016/j.tibs.2007.09.003
Ryoo, 2016, Long and short (timeframe) of endoplasmic reticulum stress-induced cell death, FEBS J., 283, 3718, 10.1111/febs.13755
Smith, 2017, ER homeostasis and autophagy, Essays Biochem., 61, 625, 10.1042/EBC20170092
Orfali, 2015, Induction of autophagy is a key component of all-trans-retinoic acid-induced differentiation in leukemia cells and a potential target for pharmacologic modulation, Exp. Hematol., 43, 10.1016/j.exphem.2015.04.012
Rajawat, 2010, Autophagy: a target for retinoic acids, Autophagy, 6, 1224, 10.4161/auto.6.8.13793
Zhou, 2016, Retinoic Acid Induced-Autophagic Flux Inhibits ER-Stress Dependent Apoptosis and Prevents Disruption of Blood-Spinal Cord Barrier after Spinal Cord Injury, Int. J. Biol. Sci., 12, 87, 10.7150/ijbs.13229
Bartke, 2009, Bioactive sphingolipids: metabolism and function, J. Lipid Res., 50, S91, 10.1194/jlr.R800080-JLR200
Bieberich, 2011, Ceramide in stem cell differentiation and embryo development: novel functions of a topological cell-signaling lipid and the concept of ceramide compartments, J. Lipids, 2011, 610306
Mendelson, 2014, Sphingosine 1-phosphate signalling, Development, 141, 5, 10.1242/dev.094805
Mizugishi, 2005, Essential role for sphingosine kinases in neural and vascular development, Mol. Cell. Biol., 25, 11113, 10.1128/MCB.25.24.11113-11121.2005
Bamborschke, 2018, A novel mutation in sphingosine-1-phosphate lyase causing congenital brain malformation, Brain Dev., 40, 480, 10.1016/j.braindev.2018.02.008
Suresh, 2019, Poring over chromosomes: mitotic nuclear pore complex segregation, Curr. Opin. Cell Biol., 58, 42, 10.1016/j.ceb.2019.01.002
Lupu, 2008, Nuclear pore composition regulates neural stem/progenitor cell differentiation in the mouse embryo, Dev. Cell, 14, 831, 10.1016/j.devcel.2008.03.011
Rasala, 2006, ELYS is a dual nucleoporin/kinetochore protein required for nuclear pore assembly and proper cell division, Proc. Natl. Acad. Sci. USA, 103, 17801, 10.1073/pnas.0608484103
Zuccolo, 2007, The human Nup107-160 nuclear pore subcomplex contributes to proper kinetochore functions, EMBO J., 26, 1853, 10.1038/sj.emboj.7601642
Hein, 2015, A human interactome in three quantitative dimensions organized by stoichiometries and abundances, Cell, 163, 712, 10.1016/j.cell.2015.09.053
Fujita, 2018, Homozygous splicing mutation in NUP133 causes Galloway-Mowat syndrome, Ann. Neurol., 84, 814, 10.1002/ana.25370
Rosti, 2017, Homozygous mutation in NUP107 leads to microcephaly with steroid-resistant nephrotic condition similar to Galloway-Mowat syndrome, J. Med. Genet., 54, 399, 10.1136/jmedgenet-2016-104237
Ungricht, 2017, Mechanisms and functions of nuclear envelope remodelling, Nat. Rev. Mol. Cell Biol., 18, 229, 10.1038/nrm.2016.153
Kwasny, 2012