Lorentz space estimates and Jacobian convergence for the Ginzburg-Landau energy with applied magnetic field

Journal d'Analyse Mathematique - Tập 106 - Trang 129-190 - 2008
Ian Tice1
1Division of Applied Mathematics, Brown University, Providence, USA

Tóm tắt

In this paper, we continue the study of Lorentz space estimates for the Ginzburg-Landau energy started in [15]. We focus on getting estimates for the Ginzburg-Landau energy with external magnetic field h ex in certain interesting regimes of h ex . This allows us to show that for configurations close to minimizers or local minimizers of the energy, the vorticity mass of the configuration (u, A) is comparable to the L 2, ∞ Lorentz space norm of ∇ A u. We also establish convergence of the gauge-invariant Jacobians (vorticity measures) in the dual of a function space defined in terms of Lorentz spaces.

Tài liệu tham khảo

C. Bennett and K. Rudnick, On Lorentz-Zygmund spaces, Dissertationes Math. 175 (1980). F. Bethuel, H. Brezis and F. Hélein, Ginzburg-Landau Vortices, Birkhäuser Boston, Boston, MA, 1994. L. Caffarelli and A. Friedman, Convexity of solutions of semilinear elliptic equations, Duke Math. J. 52 (1985), 431–456. L. Grafakos, Classical and Modern Fourier Analysis, Pearson, Upper Saddle River, 2004. F. Hélein, Harmonic Maps, Conservation Laws and Moving Frames, Cambridge University Press, Cambridge, 2002. R.-M. Hervé and M. Hervé, Étude qualitative des solutions réelles d’une équation différentielle liée à l’équation de Ginzburg-Landau, Ann. Inst. H. Poincaré Anal. Non Linéaire 11 (1994), 427–440. R. L. Jerrard, Lower bounds for generalized Ginzburg-Landau functionals, SIAM J. Math. Anal. 30 (1999), 721–746. R. L. Jerrard and H. M. Soner, The Jacobian and the Ginzburg-Landau energy, Calc. Var. Partial Differential Equations 14 (2002), 151–191. R. L. Jerrard and D. Spirn, Refined Jacobian estimates for Ginzburg-Landau functionals, Indiana Univ. Math. J. 56 (2007), 135–186. P. Mironescu, Les minimiseurs locaux pour l’équation de Ginzburg-Landau sont à symétrie radiale, C. R. Acad. Sci. Paris Sér. I Math. 323 (1996), 593–598. E. B. Saff and T. Vilmos, Logarithmic Potentials with External Fields, Springer-Verlag, Berlin, 1997. E. Sandier, Lower bounds for the energy of unit vector fields and applications, J. Funct. Anal. 152 (1998), 379–403; erratum 171 (2000), 233. E. Sandier and S. Serfaty, Ginzburg-Landau minimizers near the first critical field have bounded vorticity, Calc. Var. Partial Differential Equations 17 (2003), 17–28. E. Sandier and S. Serfaty, Vortices in the Magnetic Ginzburg-Landau Model, Birkhäuser Boston, Boston, MA, 2007. S. Serfaty and I. Tice, Lorentz space estimates for the Ginzburg-Landau energy, J. Funct. Anal. 254 (2008), 773–825. E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, 1970. E. Stein, Editor’s note: the differentiability of functions in ℝ n, Ann. of Math. (2) 113 (1981), 383–385. E. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, 1971.