Lorentz invariant quantum concurrence for $$\textit{SU}(2) \otimes \textit{SU}(2)$$ spin–parity states

The European Physical Journal Plus - Tập 135 - Trang 1-14 - 2020
Alex E. Bernardini1, Victor A. S. V. Bittencourt2, Massimo Blasone3,4
1Departamento de Física, Universidade Federal de São Carlos, São Carlos, Brazil
2Max Planck Institute for the Science of Light, Erlangen, Germany
3Dipartimento di Fisica, Università degli Studi di Salerno, Fisciano, Italy
4INFN, Sezione di Napoli, Gruppo Collegato di Salerno, Napoli, Italy

Tóm tắt

The quantum concurrence of $$\textit{SU}(2) \otimes \textit{SU}(2)$$ spin–parity states is shown to be invariant under $$\textit{SO}(1,3)$$ Lorentz boosts and O(3) rotations when the density matrices are constructed in consonance with the covariant probabilistic distribution of Dirac massive particles. Similar invariance properties are obtained for the quantum purity and for the trace of unipotent density matrix operators. The reported invariance features—obtained in the scope of the $$\textit{SU}(2) \otimes \textit{SU}(2)$$ corresponding to just one of the inequivalent representations enclosed by the $$\textit{SL}(2,{\mathbb {C}})\otimes \textit{SL}(2,{\mathbb {C}})$$ symmetry—set a more universal and kinematical-independent meaning for the quantum entanglement encoded in systems containing not only information about spin polarization but also the correlated information about intrinsic parity. Such a covariant framework is used for computing the Lorentz invariant spin–parity entanglement of spinorial particles coupled to a magnetic field, through which the extensions to more general Poincaré classes of spinor interactions are straightforwardly depicted.

Tài liệu tham khảo

R.M. Gingrich, C. Adami, Phys. Rev. Lett. 89, 270402 (2002) A. Peres, P.F. Scudo, D.R. Terno, Phys. Rev. Lett. 88, 230402 (2002) D. Ahn, H.J. Lee, Y.H. Moon, S.W. Hwang, Phys. Rev. A 67, 012103 (2003) H. Terashima, M. Ueda, Int. J. Quantum Inf. 1, 93 (2003) S.D. Bartlett, D.R. Terno, Phys. Rev. A 71, 012302 (2005) T.F. Jordan, A. Shaji, E.C.G. Sudarshan, Phys. Rev. A 75, 022101 (2007) N. Friis, R.A. Bertlmann, M. Huber, B.C. Hiesmayr, Phys. Rev. A 81, 042114 (2010) V. Palge, J. Dunningham, Phys. Rev. A 85, 042322 (2012) J. Dunningham, V. Palge, V. Vedral, Phys. Rev. A 80, 044302 (2009) V. Palge, V. Vedral, J.A. Dunningham, Phys. Rev. A 84, 044303 (2011) R. Jozsa, D.S. Abrams, J.P. Dowling, C.P. Williams, Phys. Rev. Lett. 85, 2010 (2000) V. Giovannetti, S. Lloyd, L. Maccone, Nature 412, 417 (2001) U. Yurtsever, J.P. Dowling, Phys. Rev. A 65, 052317 (2002) A. Kent, W.J. Munro, T.P. Spiller, Phys. Rev. A 84, 012326 (2011) N. Friis, A.R. Lee, K. Truong, C. Sabín, E. Solano, G. Johansson, I. Fuentes, Phys. Rev. Lett. 110, 113602 (2013) V.A.S.V. Bittencourt, A.E. Bernardini, M. Blasone, Phys. Rev. A 97, 032106 (2018) A.E. Bernardini, S.S. Mizrahi, Physica Scr. 89, 075105 (2014) V.A.S.V. Bittencourt, A.E. Bernardini, Ann. Phys. 364, 182 (2016) V.A.S.V. Bittencourt, A.E. Bernardini, M. Blasone, Phys. Rev. A 93, 053823 (2016) V.A.S.V. Bittencourt, A.E. Bernardini, Phys. Rev. B 95, 195145 (2017) W. Greiner, Relativistic Quantum Mechanics: Wave Equations (Springer, Berlin, 2000) P. Caban, J. Rembielinski, Phys. Rev. A 72, 012103 (2005) H.P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, New York, 2002) R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81, 865 (2009) T.J. Osbourne, Quantum Inf. Comput. 7(3), 209–227 (2007) W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998) W.K. Wootters, Quantum Inf. Comput. 1, 27 (2001) L. Henderson, V. Vedral, J. Phys. A Math. Gen. 34, 6899–6905 (2001) T.J. Osborne, Phys. Rev. A 72, 022309 (2005) R.F. Streater, A.S. Wightman, PCT, Spin and Statistics, and All That (W. A. Benjamin Inc., New York, 1964) S.N. Gupta, Proc. Phys. Soc. 63, 681 (1950) K. Bleuler, Helv. Phys. Acta 23, 567 (1950) Yu. Chang-shui, C. Li, He-shan Song, Phys. Rev. A 77, 012305 (2008) S. Hill, W.K. Wootters, Phys. Rev. Lett. 78, 5022 (1997) W.K. Tung, Group Theory (World Scientific Publishing, London, 2003) P.M. Alsing, G.J. Milburn, Lorentz Invariance of Entanglement. arXiv:quant-ph/020305 P. Caban, J. Rembielinski, M. Wlodarczyk, Phys. Rev. A 88, 022119 (2013) H. Bauke, S. Ahrens, C.H. Keitel, R. Grobe, New J. Phys. 16, 043012 (2014) K. Fujikawa, C.H. Oh, C. Zhang, Phys. Rev. D 90, 025028 (2014) P.L. Saldanha, V. Vedral, New J. Phys. 14, 023041 (2012) L.C. Céleri, V. Kiosses, D.R. Terno, Phys. Rev. A 94, 062115 (2016) P. Caban, J. Rembielinski, Phys. Rev. A 74, 042103 (2006) S. Moradi, JETP Lett. 89, 50 (2009) T. Choi, J. Hur, J. Kim, Phys. Rev. A 84, 012334 (2011) T. Choi, J. Korean Phys. Soc. 62, 1085 (2013) L. Fonda, G.C. Ghirardi, Symmetry Principles in Quantum Physics (Marcel Dekker Inc., New York, 1970) S. Weinberg, Quantum Theory of Fields, vol. 1 (Cambridge University Press, New York, 1995) R. Mosseri, R. Dandoloff, J. Phys. A Math. Gen. 34, 10243 (2001) P. Lévay, J. Phys. A Math. Gen. 37, 1821 (2004) V. Kiosses, J. Phys. A Math. Theor. 47, 405301 (2014) M. Czachor, Quantum Inf. Process. 9, 171 (2010)