Đặc điểm lực Lorentz của hệ thống dây thừng điện động học trần với catot rỗng

The Journal of the Astronautical Sciences - Tập 68 - Trang 327-348 - 2021
Kan Xie1, Haoxiang Yuan1, Fuwen Liang1, Wei Wang1, Qimeng Xia1
1Beijing Institute of Technology, Beijing, China

Tóm tắt

Dây thừng điện động học (EDT) là một loại hệ thống propulsi sử dụng trường địa từ và plasma ionospheric, có tiềm năng thực hiện nhiệm vụ loại bỏ rác không gian mà không tiêu tốn một lượng lớn nhiên liệu. Để hiểu rõ các đặc tính động học của hệ thống EDT trần, một mô hình động lực học quỹ đạo dựa trên mô hình không gian môi trường chi tiết và các đặc điểm xả thực tế của bộ kết nối plasma catot rỗng (HCPC) đã được xây dựng. Qua mô phỏng số, sự khác biệt trong hiệu suất của dây thừng trần do các điều kiện quỹ đạo khác nhau và mô hình điện áp HCPC (ở điện áp cố định hoặc biến đổi) đã được so sánh và thảo luận. Kết quả cho thấy các sự phân biệt động học phát sinh từ hai mô hình điện áp lệch sẽ gia tăng khi vĩ độ tăng từ 0° đến 60°.

Từ khóa

#Dây thừng điện động học #vệ tinh #mô hình động lực học quỹ đạo #plasma ionospheric #rác không gian

Tài liệu tham khảo

Ahedo, E., Sanmartin, J.: Analysis of electrodynamic tethers as deorbiting systems. In: 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Joint Propulsion Conferences. American Institute of Aeronautics and Astronautics, (2000) Ahedo, E., Sanmartin, J.R.: Analysis of bare-tether Systems for Deorbiting low-Earth-Orbit Satellites. J. Spacecr. Rocket. 39(2), 198–205 (2002). https://doi.org/10.2514/2.3820 Beletsky, V.V., Levin, E.M.: Traveling Tether. In: Dynamics of Space Tether Systems, 1st ed. San Diego (1993) Bilitza, D., Reinisch, B.W.: International reference ionosphere 2007: improvements and new parameters. Adv. Space Res. 42(4), 599–609 (2008). https://doi.org/10.1016/j.asr.2007.07.048 Bombardelli, C.: Power density of a bare Electrodynamic tether Generator. J. Propuls. Power. 28(3), 664–668 (2012). https://doi.org/10.2514/1.B34189 Cash, J.R., Moore, D.R.: A high order method for the numerical solution of two-point boundary value problems. BIT Numer. Math. 20(1), 44–52 (1980). https://doi.org/10.1007/BF01933584 Colombo, G., Martinez-Sanchez, M., Arnold, D.: The study of the use of tethers for payload orbital transfer. Continuation of investigation of electrodynamic stabilization and control of long orbiting tethers. In. (1982) Englert, C.R., Bays, J.T., Marr, K.D., Brown, C.M., Nicholas, A.C., Finne, T.T.: Optical orbital debris spotter. Acta Astronaut. 104(1), 99–105 (2014). https://doi.org/10.1016/j.actaastro.2014.07.031 Gilchrist, B., Bilen, S., Hoyt, R., Stone, N., Vaughn, J., Fuhrhop, K., Krause, L., Khazanov, G., Johnson, L.: The PROPEL Electrodynamic Tether Mission and Connecting to the Ionosphere. In: 12th Spacecraft Charging Technology Conference (2012) Goebel, D.M., Watkins, R.M., Jameson, K.K.: LaB6 hollow cathodes for ion and hall thrusters. J. Propuls. Power. 23(3), 552–558 (2007). https://doi.org/10.2514/1.25475 Goldberg, H.R., Gilchrist, B.E.: The Icarus student satellite project. Acta Astronaut. 56(1–2), 107–114 (2005). https://doi.org/10.1016/j.actaastro.2004.09.016 Hedin, A.E.: The atmospheric model in the region 90 to 2000 km. Adv. Space Res. 8(5), 9–25 (1988). https://doi.org/10.1016/0273-1177(88)90038-5 Johnson, L., Gilchrist, B., Estes, R.D., Lorenzini, E.: Overview of future NASA tether applications. In: James, H.G., Raitt, W.J., Sultzer, M.P. (eds.) active experiments in space plasmas, vol. 24. Adv. Space Res. 8, 1055–1063 (1999) Katz, I., Lilley, J.R., Greb, A., McCoy, J.E., Galofaro, J., Ferguson, D.C.: Plasma turbulence enhanced current collection - results from the plasma motor generator electrodynamic tether flight. J Geophys. Res. Space Phys. 100(A2), 1687–1690 (1995). https://doi.org/10.1029/94ja03142 Khazanov, G.V., Krivorutsky, E., Sheldon, R.B.: Solid and grid sphere current collection in view of the tethered satellite system TSS 1 and TSS 1R mission results. J Geophys. Res. Space Phys. 110(A12) (2005). doi:https://doi.org/10.1029/2005ja011100 Kruijff, M.: Tethers in space: a propellantless propulsion in-orbit demonstration. Doctoral Thesis (2011) Li, W., Li, H., Ding, Y., Wei, L., Lu, H., Gao, Q., Ning, Z., Yu, D.: An experimental setup for hollow cathode independent life test simulating hall thruster discharge current oscillations. Adv. Space Res. 62(9), 2551–2555 (2018). https://doi.org/10.1016/j.asr.2018.07.020 Maus, S., Macmillan, S., McLean, S., Hamilton, B., Thomson, A., Nair, M., Rollins, C.: The US/UK World Magnetic Model for 2010–2015. In. NOAA Technical Report NESDIS/NGDC, (2010) Ning, Z.-X., Zhang, H.-G., Zhu, X.-M., Ouyang, L., Liu, X.-Y., Jiang, B.-H., Yu, D.-R.: 10000-ignition-cycle investigation of a LaB6 hollow cathode for 3-5-kilowatt hall thruster. J. Propuls. Power. 35(1), 87–93 (2019). https://doi.org/10.2514/1.B37192 Ohkawa, Y., Kawamoto, S., Okumura, T., Iki, K., Horikawa, Y., Kawashima, K., Miura, Y., Takai, M., Washiya, M., Kawasaki, O., Tsujita, D., Kasai, T., Uematsu, H., Inoue, K.: Preparation for an On-Orbit Demonstration of an Electrodynamic Tether on the H-II Transfer Vehicle. Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan. 14(ists30), Pb_1–Pb_6 (2016). https://doi.org/10.2322/tastj.14.Pb_1 Oks, E.M., Anders, A., Brown, I.G.: Some effects of magnetic field on a hollow cathode ion source. Rev. Sci. Instrum. 75(4), 1030–1033 (2004). https://doi.org/10.1063/1.1651633 Okumura, T., Ohkawa, Y., Koga, K., Kawakita, S., Kawamoto, S., Kobayashi, Y., Kasai, T.: Charging of the H-II transfer vehicle at rendezvous and docking phase. J. Spacecr. Rocket. 55(4), 971–983 (2018). https://doi.org/10.2514/1.A34068 Pardini, C., Hanada, T., Krisko, P.H.: Benefits and risks of using electrodynamic tethers to de-orbit spacecraft. Acta Astronaut. 64(5–6), 571–588 (2009). https://doi.org/10.1016/j.actaastro.2008.10.007 Pardini, C., Hanada, T., Krisko, P.H., Anselmo, L., Hirayama, H.: Are de-orbiting missions possible using electrodynamic tethers? Task review from the space debris perspective. Acta Astronaut. 60(10–11), 916–929 (2007). https://doi.org/10.1016/j.actaastro.2006.11.001 Pedrini, D., Ducci, C., Misuri, T., Paganucci, F., Andrenucci, M.: Sitael hollow cathodes for low-power hall effect thrusters. IEEE Trans. Plasma Sci. 46(2), 296–303 (2018). https://doi.org/10.1109/TPS.2017.2778317 Pelaez, J., Andres, Y.N.: Dynamic stability of electrodynamic tethers in inclined elliptical orbits. J Guidance Control Dyn. 28(4), 611–622 (2005). https://doi.org/10.2514/1.6685 Pelaez, J., Sanjurjo, M.: Generator regime of self-balanced electrodynamic bare tethers. J. Spacecr. Rocket. 43(6), 1359–1369 (2006). https://doi.org/10.2514/1.20471 Qin, Y., Xie, K., Guo, N., Zhang, Z., Zhang, C., Gu, Z., Zhang, Y., Jiang, Z., Ouyang, J.: The analysis of high amplitude of potential oscillations near the hollow cathode of ion thruster. Acta Astronaut. 134, 265–277 (2017). https://doi.org/10.1016/j.actaastro.2017.02.012 Qin, Y., Xie, K., Zhang, Y., Ouyang, J.: Self-pulsing in a low-current hollow cathode discharge: From Townsend to glow discharge. Phys. Plasmas 23(2) (2016). doi:https://doi.org/10.1063/1.4941281 Sanchez-Arriaga, G., Bombardelli, C., Chen, X.: Impact of nonideal effects on bare Electrodynamic tether performance. J. Propuls. Power. 31(3), 951–955 (2015). https://doi.org/10.2514/1.B35393 Sanjurjo-Rivo, M., Pelaez, J.: Energy analysis of bare Electrodynamic tethers. J. Propuls. Power. 27(1), 246–256 (2011). https://doi.org/10.2514/1.48168 Sanmartin, J., Charro, M., Lorenzini, E., Cosmo, M., Estes, R.: Analysis of ProSEDS Test of Bare-tether Collection. Paper presented at the 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (2003) Sanmartin, J.R., Martinezsanchez, M., Ahedo, E.: Bare wire anodes for electrodynamic tethers. J. Propuls. Power. 9(3), 353–360 (1993). https://doi.org/10.2514/3.23629 van der Heide, E.J., Carroll, J.A., Kruijff, M.: Options for coordinated multi-point sensing in the lower thermosphere. Phys. Chem. Earth Part C Solar Terrestial Planet. Sci. 26(4), 285–291 (2001). https://doi.org/10.1016/s1464-1917(00)00122-7 Vaughn, J., Curtis, L., Gilchrist, B., Bilen, S., Lorenzini, E.: Review of the ProSEDS Electrodynamic Tether Mission Development. In: 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit 2004 Watanabe, T., Fujii, H.A., Kusagaya, T., Sahara, H., Kojima, H., Takehara, S., Yamagiwa, Y., Sasaki, S., Abe, T., Tanaka, K., Oyama, K., Ebinuma, T., Johnson, L., Khazanov, G.V., Sanmartin, J.R., Charro, M., Kruijff, M., Heide, E.J.V.D., Rubin, B., Quiros, F.J.G.D., Trivailo, P.M., Williams, P.: T-Rex: Bare Electro-Dynamic Tape-Tether Technology Experiment on Sounding Rocket S520. The Journal of Space Technology and Science. 26(1), 1_14–11_20 (2012). https://doi.org/10.11230/jsts.26.1_14 Williams, S.D., Gilchrist, B.E., Aguero, V.M., Indiresan, R.S., Thompson, D.C., Raitt, W.J.: TSS-1R vertical electric fields: long baseline measurements using an electrodynamic tether as a double probe. Geophys. Res. Lett. 25(4), 445–448 (1998). https://doi.org/10.1029/97gl03259 Xie, K., Farnell, C.C., Williams, J.D.: The plasma properties and electron emission characteristics of near-zero differential resistance of hollow cathode-based plasma contactors with a discharge chamber. Phys. Plasmas 21(8) (2014a). doi:https://doi.org/10.1063/1.4892953 Xie, K., Martinez, R.A., Williams, J.D.: Current-voltage characteristics of a cathodic plasma contactor with discharge chamber for application in electrodynamic tether propulsion. J Phys. D Appl. Phys. 47(15) (2014b). doi:https://doi.org/10.1088/0022-3727/47/15/155501 Xie, K., Xia, Q., Williams, J.D., Martinez, R.A., Farnell, C.C.: Extracted current, Bias voltage, and ion production of Cathodic hollow-cathode-driven plasma contactors. J. Spacecr. Rocket. 52(4), 1181–1192 (2015). https://doi.org/10.2514/1.A33049 Yu, B., Dai, P., Jin, D.: Modeling and dynamics of a bare tape-shaped tethered satellite system. Aerosp. Sci. Technol. 79, 288–296 (2018). https://doi.org/10.1016/j.ast.2018.05.046 Zhong, R., Zhu, Z.: Dynamics of Nanosatellite deorbit by bare Electrodynamic tether in low earth orbit. J. Spacecr. Rocket. 50(3), 691–700 (2013). https://doi.org/10.2514/1.A32336