Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Đặc điểm lực Lorentz của hệ thống dây thừng điện động học trần với catot rỗng
Tóm tắt
Dây thừng điện động học (EDT) là một loại hệ thống propulsi sử dụng trường địa từ và plasma ionospheric, có tiềm năng thực hiện nhiệm vụ loại bỏ rác không gian mà không tiêu tốn một lượng lớn nhiên liệu. Để hiểu rõ các đặc tính động học của hệ thống EDT trần, một mô hình động lực học quỹ đạo dựa trên mô hình không gian môi trường chi tiết và các đặc điểm xả thực tế của bộ kết nối plasma catot rỗng (HCPC) đã được xây dựng. Qua mô phỏng số, sự khác biệt trong hiệu suất của dây thừng trần do các điều kiện quỹ đạo khác nhau và mô hình điện áp HCPC (ở điện áp cố định hoặc biến đổi) đã được so sánh và thảo luận. Kết quả cho thấy các sự phân biệt động học phát sinh từ hai mô hình điện áp lệch sẽ gia tăng khi vĩ độ tăng từ 0° đến 60°.
Từ khóa
#Dây thừng điện động học #vệ tinh #mô hình động lực học quỹ đạo #plasma ionospheric #rác không gianTài liệu tham khảo
Ahedo, E., Sanmartin, J.: Analysis of electrodynamic tethers as deorbiting systems. In: 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Joint Propulsion Conferences. American Institute of Aeronautics and Astronautics, (2000)
Ahedo, E., Sanmartin, J.R.: Analysis of bare-tether Systems for Deorbiting low-Earth-Orbit Satellites. J. Spacecr. Rocket. 39(2), 198–205 (2002). https://doi.org/10.2514/2.3820
Beletsky, V.V., Levin, E.M.: Traveling Tether. In: Dynamics of Space Tether Systems, 1st ed. San Diego (1993)
Bilitza, D., Reinisch, B.W.: International reference ionosphere 2007: improvements and new parameters. Adv. Space Res. 42(4), 599–609 (2008). https://doi.org/10.1016/j.asr.2007.07.048
Bombardelli, C.: Power density of a bare Electrodynamic tether Generator. J. Propuls. Power. 28(3), 664–668 (2012). https://doi.org/10.2514/1.B34189
Cash, J.R., Moore, D.R.: A high order method for the numerical solution of two-point boundary value problems. BIT Numer. Math. 20(1), 44–52 (1980). https://doi.org/10.1007/BF01933584
Colombo, G., Martinez-Sanchez, M., Arnold, D.: The study of the use of tethers for payload orbital transfer. Continuation of investigation of electrodynamic stabilization and control of long orbiting tethers. In. (1982)
Englert, C.R., Bays, J.T., Marr, K.D., Brown, C.M., Nicholas, A.C., Finne, T.T.: Optical orbital debris spotter. Acta Astronaut. 104(1), 99–105 (2014). https://doi.org/10.1016/j.actaastro.2014.07.031
Gilchrist, B., Bilen, S., Hoyt, R., Stone, N., Vaughn, J., Fuhrhop, K., Krause, L., Khazanov, G., Johnson, L.: The PROPEL Electrodynamic Tether Mission and Connecting to the Ionosphere. In: 12th Spacecraft Charging Technology Conference (2012)
Goebel, D.M., Watkins, R.M., Jameson, K.K.: LaB6 hollow cathodes for ion and hall thrusters. J. Propuls. Power. 23(3), 552–558 (2007). https://doi.org/10.2514/1.25475
Goldberg, H.R., Gilchrist, B.E.: The Icarus student satellite project. Acta Astronaut. 56(1–2), 107–114 (2005). https://doi.org/10.1016/j.actaastro.2004.09.016
Hedin, A.E.: The atmospheric model in the region 90 to 2000 km. Adv. Space Res. 8(5), 9–25 (1988). https://doi.org/10.1016/0273-1177(88)90038-5
Johnson, L., Gilchrist, B., Estes, R.D., Lorenzini, E.: Overview of future NASA tether applications. In: James, H.G., Raitt, W.J., Sultzer, M.P. (eds.) active experiments in space plasmas, vol. 24. Adv. Space Res. 8, 1055–1063 (1999)
Katz, I., Lilley, J.R., Greb, A., McCoy, J.E., Galofaro, J., Ferguson, D.C.: Plasma turbulence enhanced current collection - results from the plasma motor generator electrodynamic tether flight. J Geophys. Res. Space Phys. 100(A2), 1687–1690 (1995). https://doi.org/10.1029/94ja03142
Khazanov, G.V., Krivorutsky, E., Sheldon, R.B.: Solid and grid sphere current collection in view of the tethered satellite system TSS 1 and TSS 1R mission results. J Geophys. Res. Space Phys. 110(A12) (2005). doi:https://doi.org/10.1029/2005ja011100
Kruijff, M.: Tethers in space: a propellantless propulsion in-orbit demonstration. Doctoral Thesis (2011)
Li, W., Li, H., Ding, Y., Wei, L., Lu, H., Gao, Q., Ning, Z., Yu, D.: An experimental setup for hollow cathode independent life test simulating hall thruster discharge current oscillations. Adv. Space Res. 62(9), 2551–2555 (2018). https://doi.org/10.1016/j.asr.2018.07.020
Maus, S., Macmillan, S., McLean, S., Hamilton, B., Thomson, A., Nair, M., Rollins, C.: The US/UK World Magnetic Model for 2010–2015. In. NOAA Technical Report NESDIS/NGDC, (2010)
Ning, Z.-X., Zhang, H.-G., Zhu, X.-M., Ouyang, L., Liu, X.-Y., Jiang, B.-H., Yu, D.-R.: 10000-ignition-cycle investigation of a LaB6 hollow cathode for 3-5-kilowatt hall thruster. J. Propuls. Power. 35(1), 87–93 (2019). https://doi.org/10.2514/1.B37192
Ohkawa, Y., Kawamoto, S., Okumura, T., Iki, K., Horikawa, Y., Kawashima, K., Miura, Y., Takai, M., Washiya, M., Kawasaki, O., Tsujita, D., Kasai, T., Uematsu, H., Inoue, K.: Preparation for an On-Orbit Demonstration of an Electrodynamic Tether on the H-II Transfer Vehicle. Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan. 14(ists30), Pb_1–Pb_6 (2016). https://doi.org/10.2322/tastj.14.Pb_1
Oks, E.M., Anders, A., Brown, I.G.: Some effects of magnetic field on a hollow cathode ion source. Rev. Sci. Instrum. 75(4), 1030–1033 (2004). https://doi.org/10.1063/1.1651633
Okumura, T., Ohkawa, Y., Koga, K., Kawakita, S., Kawamoto, S., Kobayashi, Y., Kasai, T.: Charging of the H-II transfer vehicle at rendezvous and docking phase. J. Spacecr. Rocket. 55(4), 971–983 (2018). https://doi.org/10.2514/1.A34068
Pardini, C., Hanada, T., Krisko, P.H.: Benefits and risks of using electrodynamic tethers to de-orbit spacecraft. Acta Astronaut. 64(5–6), 571–588 (2009). https://doi.org/10.1016/j.actaastro.2008.10.007
Pardini, C., Hanada, T., Krisko, P.H., Anselmo, L., Hirayama, H.: Are de-orbiting missions possible using electrodynamic tethers? Task review from the space debris perspective. Acta Astronaut. 60(10–11), 916–929 (2007). https://doi.org/10.1016/j.actaastro.2006.11.001
Pedrini, D., Ducci, C., Misuri, T., Paganucci, F., Andrenucci, M.: Sitael hollow cathodes for low-power hall effect thrusters. IEEE Trans. Plasma Sci. 46(2), 296–303 (2018). https://doi.org/10.1109/TPS.2017.2778317
Pelaez, J., Andres, Y.N.: Dynamic stability of electrodynamic tethers in inclined elliptical orbits. J Guidance Control Dyn. 28(4), 611–622 (2005). https://doi.org/10.2514/1.6685
Pelaez, J., Sanjurjo, M.: Generator regime of self-balanced electrodynamic bare tethers. J. Spacecr. Rocket. 43(6), 1359–1369 (2006). https://doi.org/10.2514/1.20471
Qin, Y., Xie, K., Guo, N., Zhang, Z., Zhang, C., Gu, Z., Zhang, Y., Jiang, Z., Ouyang, J.: The analysis of high amplitude of potential oscillations near the hollow cathode of ion thruster. Acta Astronaut. 134, 265–277 (2017). https://doi.org/10.1016/j.actaastro.2017.02.012
Qin, Y., Xie, K., Zhang, Y., Ouyang, J.: Self-pulsing in a low-current hollow cathode discharge: From Townsend to glow discharge. Phys. Plasmas 23(2) (2016). doi:https://doi.org/10.1063/1.4941281
Sanchez-Arriaga, G., Bombardelli, C., Chen, X.: Impact of nonideal effects on bare Electrodynamic tether performance. J. Propuls. Power. 31(3), 951–955 (2015). https://doi.org/10.2514/1.B35393
Sanjurjo-Rivo, M., Pelaez, J.: Energy analysis of bare Electrodynamic tethers. J. Propuls. Power. 27(1), 246–256 (2011). https://doi.org/10.2514/1.48168
Sanmartin, J., Charro, M., Lorenzini, E., Cosmo, M., Estes, R.: Analysis of ProSEDS Test of Bare-tether Collection. Paper presented at the 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (2003)
Sanmartin, J.R., Martinezsanchez, M., Ahedo, E.: Bare wire anodes for electrodynamic tethers. J. Propuls. Power. 9(3), 353–360 (1993). https://doi.org/10.2514/3.23629
van der Heide, E.J., Carroll, J.A., Kruijff, M.: Options for coordinated multi-point sensing in the lower thermosphere. Phys. Chem. Earth Part C Solar Terrestial Planet. Sci. 26(4), 285–291 (2001). https://doi.org/10.1016/s1464-1917(00)00122-7
Vaughn, J., Curtis, L., Gilchrist, B., Bilen, S., Lorenzini, E.: Review of the ProSEDS Electrodynamic Tether Mission Development. In: 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit 2004
Watanabe, T., Fujii, H.A., Kusagaya, T., Sahara, H., Kojima, H., Takehara, S., Yamagiwa, Y., Sasaki, S., Abe, T., Tanaka, K., Oyama, K., Ebinuma, T., Johnson, L., Khazanov, G.V., Sanmartin, J.R., Charro, M., Kruijff, M., Heide, E.J.V.D., Rubin, B., Quiros, F.J.G.D., Trivailo, P.M., Williams, P.: T-Rex: Bare Electro-Dynamic Tape-Tether Technology Experiment on Sounding Rocket S520. The Journal of Space Technology and Science. 26(1), 1_14–11_20 (2012). https://doi.org/10.11230/jsts.26.1_14
Williams, S.D., Gilchrist, B.E., Aguero, V.M., Indiresan, R.S., Thompson, D.C., Raitt, W.J.: TSS-1R vertical electric fields: long baseline measurements using an electrodynamic tether as a double probe. Geophys. Res. Lett. 25(4), 445–448 (1998). https://doi.org/10.1029/97gl03259
Xie, K., Farnell, C.C., Williams, J.D.: The plasma properties and electron emission characteristics of near-zero differential resistance of hollow cathode-based plasma contactors with a discharge chamber. Phys. Plasmas 21(8) (2014a). doi:https://doi.org/10.1063/1.4892953
Xie, K., Martinez, R.A., Williams, J.D.: Current-voltage characteristics of a cathodic plasma contactor with discharge chamber for application in electrodynamic tether propulsion. J Phys. D Appl. Phys. 47(15) (2014b). doi:https://doi.org/10.1088/0022-3727/47/15/155501
Xie, K., Xia, Q., Williams, J.D., Martinez, R.A., Farnell, C.C.: Extracted current, Bias voltage, and ion production of Cathodic hollow-cathode-driven plasma contactors. J. Spacecr. Rocket. 52(4), 1181–1192 (2015). https://doi.org/10.2514/1.A33049
Yu, B., Dai, P., Jin, D.: Modeling and dynamics of a bare tape-shaped tethered satellite system. Aerosp. Sci. Technol. 79, 288–296 (2018). https://doi.org/10.1016/j.ast.2018.05.046
Zhong, R., Zhu, Z.: Dynamics of Nanosatellite deorbit by bare Electrodynamic tether in low earth orbit. J. Spacecr. Rocket. 50(3), 691–700 (2013). https://doi.org/10.2514/1.A32336