Looking beyond Arthrospira: Comparison of antioxidant and anti-inflammatory properties of ten cyanobacteria strains

Algal Research - Tập 74 - Trang 103182 - 2023
Patricia I. Gómez1, Jaen Mayorga1, David Flaig1, Pablo Castro-Varela1, Alejandra Jaupi2, Pablo A. Ulloa3, Jorge Soto-Bartierra2, Vitalia Henríquez2, Verónica Rojas2
1Grupo de Investigación Microalgal FICOLAB, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Chacabuco s/n, Barrio Universitario, Concepción, Chile
2Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Av. Universidad N° 330, Curauma, Valparaíso, Chile
3Instituto de Investigaciones Agropecuarias (INIA), Av. Santa Rosa 11.610, La Pintana, Santiago, Chile

Tài liệu tham khảo

Guiry, 2023 Levasseur, 2020, A review of high value-added molecules production by microalgae in light of the classification, Biotechnol. Adv., 41, 10.1016/j.biotechadv.2020.107545 Novoveská, 2019, Microalgal carotenoids: a review of production, current markets, regulations, and future direction, Mar. Drugs, 17, 10.3390/md17110640 Hu, 2007, Industrial production of microalgal cell-mass and secondary products - major industrial species: Arthrospira (Spirulina) platensis, 264 Nicoletti, 2022, Chapter 10 - the nutraceutical potential of cyanobacteria, 287 Rastogi, 2009, Biotechnological and industrial significance of cyanobacterial secondary metabolites, Biotechnol. Adv., 27, 521, 10.1016/j.biotechadv.2009.04.009 Flombaum, 2013, Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus, Proc. Natl. Acad. Sci. U. S. A., 110, 9824, 10.1073/pnas.1307701110 Tóth, 2015, Carotenoids are essential for the assembly of cyanobacterial photosynthetic complexes, Biochim. Biophys. Acta Bioenergetics, 1847, 1153, 10.1016/j.bbabio.2015.05.020 Al-Haj, 2016, Cyanobacteria as chassis for industrial biotechnology: progress and prospects, Life (Basel), 6, 42 Vijayakumar, 2015, Pharmaceutical applications of cyanobacteria—a review, J. Acute Med., 5, 15, 10.1016/j.jacme.2015.02.004 Furmaniak, 2017, Edible cyanobacterial genus Arthrospira: actual state of the art in cultivation methods, genetics, and application in medicine, Front. Microbiol., 8, 2541, 10.3389/fmicb.2017.02541 Abed, 2009, Applications of cyanobacteria in biotechnology, J. Appl. Microbiol., 106, 1, 10.1111/j.1365-2672.2008.03918.x Sili, 2012, Chapter 25, Arthrospira (Spirulina), 677 Delrue, 2017, Optimization of Arthrospira platensis (Spirulina) growth: from laboratory scale to pilot scale, Fermentation, 3, 59, 10.3390/fermentation3040059 Mitra, 2019, Multiproduct biorefinery from Arthrospira spp. towards zero waste: current status and future trends, Bioresour. Technol., 291, 10.1016/j.biortech.2019.121928 Hajat, 2018, The global burden of multiple chronic conditions: a narrative review, Prev. Med. Rep., 12, 284, 10.1016/j.pmedr.2018.10.008 Chakrabarti, 2014, Food-derived bioactive peptides on inflammation and oxidative stress, Biomed. Res. Int., 608979 Cicero, 2017, Potential role of bioactive peptides in prevention and treatment of chronic diseases: a narrative review, Br. J. Pharmacol., 174, 1378, 10.1111/bph.13608 Furman, 2019, Chronic inflammation in the etiology of disease across the life span, Nat. Med., 25, 1822, 10.1038/s41591-019-0675-0 Sharma, 2017, Synergistic antioxidant activity of natural products, Ann. Pharmacol. Pharm., 2, 1086 Cannizzo, 2011, Oxidative stress, inflamm-aging and immunosenescence, J. Proteome, 74, 2313, 10.1016/j.jprot.2011.06.005 Xia, 2016, An update on inflamm-aging: mechanisms, prevention, and treatment, J Immunol Res, 10.1155/2016/8426874 Lobo, 2010, Free radicals, antioxidants and functional foods: impact on human health, Pharmacogn. Rev., 4, 118, 10.4103/0973-7847.70902 Sonani, 2017, Natural antioxidants from algae: a therapeutic perspective, 91 Wu, 2016, The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: an overview, Arch. Toxicol., 90, 1817, 10.1007/s00204-016-1744-5 Gauthier, 2020, Microalgae under environmental stress as a source of antioxidants, Algal Res., 52, 10.1016/j.algal.2020.102104 Frank, 2015, Inflammaging: a concept analysis, J. Nurse Pract., 11, 258, 10.1016/j.nurpra.2014.08.005 Olajide, 2020, Anti-inflammatory natural products, Annu. Rep. Med. Chem., 55, 153 Tungmunnithum, 2018, Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: an overview, Medicines, 5, 93, 10.3390/medicines5030093 Li, 2007, Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae, Food Chem., 102, 771, 10.1016/j.foodchem.2006.06.022 Ijaz, 2016, Antioxidant potential of indigenous cyanobacterial strains in relation with their phenolic and flavonoid contents, Nat. Prod. Res., 30, 1297, 10.1080/14786419.2015.1053088 Jin, 2021, Potential of producing flavonoids using Cyanobacteria as a sustainable chassis, J. Agric. Food Chem., 69, 12385, 10.1021/acs.jafc.1c04632 Romay, 1998, Antioxidant and anti-inflammatory properties of C-phycocyanin from blue-green algae, Inflamm. Res., 47, 36, 10.1007/s000110050256 Fernández-Rojas, 2014, Nutraceutical properties of phycocyanin, J. Funct. Foods, 11, 375, 10.1016/j.jff.2014.10.011 Pagels, 2019, Phycobiliproteins from cyanobacteria: chemistry and biotechnological applications, Biotechnol. Adv., 37, 422, 10.1016/j.biotechadv.2019.02.010 Romay, 1998, Further studies on anti-inflammatory activity of phycocyanin in some animal models of inflammation, Inflamm. Res., 47, 334, 10.1007/s000110050338 Romay, 2003, C-phycocyanin: a biliprotein with antioxidant, anti-inflammatory and neuroprotective effects, Curr. Protein Pept. Sci., 4, 207, 10.2174/1389203033487216 Reddy, 2000, Selective inhibition of cyclooxygenase-2 by C-phycocyanin, a biliprotein from Spirulina platensis, Biochem. Biophys. Res. Commun., 277, 599, 10.1006/bbrc.2000.3725 Prabakaran, 2020, Extraction and characterization of phycocyanin from Spirulina platensis and evaluation of its anticancer, antidiabetic and antiinflammatory effect, Int. J. Biol. Macromol., 153, 256, 10.1016/j.ijbiomac.2020.03.009 Aiba, 1977, Assessment of growth yield of a blue-green alga, Spirulina platensis, in axenic and continuous culture, J. Gen. Microbiol., 102, 179, 10.1099/00221287-102-1-179 Rippka, 1979, Generic assignments, strain histories and properties of pure cultures of cyanobacteria, J. Gen. Microbiol., 111, 1 López-Rodríguez, 2021, Comparison of two strains of the edible cyanobacteria Arthrospira: biochemical characterization and antioxidant properties, Food Biosci., 42, 10.1016/j.fbio.2021.101144 López, 2011, The effects of solvents on the phenolic contents and antioxidant activity of Stypocaulon scoparium algae extracts, Food Chem., 125, 1104, 10.1016/j.foodchem.2010.09.101 Chang, 2020, Estimation of total flavonoid content in propolis by two complementary colorimetric methods, J. Food Drug Anal., 10, 3 Farasat, 2014, Antioxidant activity, total phenolics and flavonoid contents of some edible green seaweeds from Northern Coasts of the Persian Gulf, Iran. J. Pharm. Res., 13, 163 Moreira, 2008, Antioxidant properties, total phenols and pollen analysis of propolis samples from Portugal, Food Chem. Toxicol., 46, 3482, 10.1016/j.fct.2008.08.025 Guedes, 2013, Evaluation of the antioxidant activity of cell extracts from microalgae, Mar. Drugs, 11, 1256, 10.3390/md11041256 Thaipong, 2006, Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts, J. Food Compos. Anal., 19, 669, 10.1016/j.jfca.2006.01.003 Abe, 1991, Effects of calcium antagonists on the erythrocyte membrane, J. Pharm. Pharmacol., 43, 22, 10.1111/j.2042-7158.1991.tb05441.x Okoli, 2004, Mechanisms of the anti-inflammatory activity of the leaf extracts of Culcasia scandens P. Beauv (Araceae), Pharmacol. Biochem. Behav., 79, 473, 10.1016/j.pbb.2004.08.012 Hoiczyk, 2000, Cyanobacterial cell walls: news from an unusual prokaryotic envelope, J. Bacteriol., 182, 1191, 10.1128/JB.182.5.1191-1199.2000 Šmarda, 2002, S-layers on cell walls of cyanobacteria, Micron, 33, 257, 10.1016/S0968-4328(01)00031-2 Masojidek, 2004, Photosynthesis in microalgae, 20 Søndergaard, 2011, Using chlorophyll a and cyanobacteria in the ecological classification of lakes, Ecol. Indic., 11, 1403, 10.1016/j.ecolind.2011.03.002 Liu, 2021, Chlorophyll a estimation in lakes using multi-parameter sonde data, Water Res., 205, 10.1016/j.watres.2021.117661 Almendinger, 2021, Characterization of selected microalgae and cyanobacteria as sources of compounds with antioxidant capacity, Algal Res., 53, 10.1016/j.algal.2020.102168 Ajayan, 2012, Enrichment of chlorophyll and phycobiliproteins in Spirulina platensis by the use of reflector light and nitrogen sources: an in-vitro study, Biomass Bioenergy, 47, 436, 10.1016/j.biombioe.2012.09.012 Lima, 2018, Influence of spectral light quality on the pigment concentrations and biomass productivity of Arthrospira platensis, Algal Res., 31, 157, 10.1016/j.algal.2018.02.012 Sasso, 2012, Microalgae in the postgenomic era: a blooming reservoir for new natural products, FEMS Microbiol. Rev., 36, 761, 10.1111/j.1574-6976.2011.00304.x Varela, 2015, Production of carotenoids by microalgae: achievements and challenges, Photosynth. Res., 125, 423, 10.1007/s11120-015-0149-2 Gong, 2016, Carotenoids from microalgae: a review of recent developments, Biotechnol. Adv., 34, 1396, 10.1016/j.biotechadv.2016.10.005 Patias, 2017, Carotenoid profile of three microalgae/cyanobacteria species with peroxyl radical scavenger capacity, Food Res. Int., 100, 260, 10.1016/j.foodres.2017.06.069 Janssen, 2022, Microalgae based production of single-cell protein, Curr. Opin. Biotechnol., 75, 10.1016/j.copbio.2022.102705 Becker, 2007, Micro-algae as a source of protein, Biotechnol. Adv., 25, 207, 10.1016/j.biotechadv.2006.11.002 Torres-Tiji, 2020, Microalgae as a future food source, Biotechnol. Adv., 41, 10.1016/j.biotechadv.2020.107536 Samsonoff, 2001, Biliproteins and phycobilisomes from cyanobacteria and red algae at the extremes of habitat, Arch. Microbiol., 176, 400, 10.1007/s002030100346 Hsieh-Lo, 2019, Phycocyanin and phycoerythrin: strategies to improve production yield and chemical stability, Algal Res., 42, 10.1016/j.algal.2019.101600 Tarko, 2012, Influence of growth medium composition on synthesis of bioactive compounds and antioxidant properties of selected strains of Arthrospira cyanobacteria, Czech J. Food Sci., 30, 258, 10.17221/46/2011-CJFS Eriksen, 2008, Production of phycocyanin-a pigment with applications in biology, biotechnology, foods and medicine, Appl. Microbiol. Biotechnol., 80, 1, 10.1007/s00253-008-1542-y Finley, 2011, Antioxidants in foods: state of the science important to the food industry, J. Agric. Food Chem., 59, 6837, 10.1021/jf2013875 Carocho, 2018, Antioxidants: reviewing the chemistry, food applications, legislation and role as preservatives, Trends Food Sci. Technol., 71, 107, 10.1016/j.tifs.2017.11.008 Gutiérrez-Del-Río, 2021, Terpenoids and polyphenols as natural antioxidant agents in food preservation, Antioxidants, 10, 1264, 10.3390/antiox10081264 Jerez-Martel, 2017, Phenolic profile and antioxidant activity of crude extracts from microalgae and cyanobacteria strains, J. Food Qual., 10.1155/2017/2924508 Guerreiro, 2020, Antioxidant and cytoprotective properties of cyanobacteria: potential for biotechnological applications, Toxins, 12, 548, 10.3390/toxins12090548 Huang, 2021, Marine bioactive compounds as nutraceutical and functional food ingredients for potential oral health, Front. Nutr., 8, 1011, 10.3389/fnut.2021.686663 Ilyasov, 2020, ABTS/PP decolorization assay of antioxidant capacity reaction pathways, Int. J. Mol. Sci., 21, 1131, 10.3390/ijms21031131 Bondet, 1997, Kinetics and mechanisms of antioxidant activity using the DPPH free radical method, LWT Food Sci. Technol., 30, 609, 10.1006/fstl.1997.0240 Shalaby, 2013, Comparison of DPPH and ABTS assays for determining antioxidant potential of water and methanol extracts of Spirulina platensis, Indian J. Geo-mar. Sci., 42, 556 Benzie, 1999, Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration, Methods Enzymol., 299, 15, 10.1016/S0076-6879(99)99005-5 Guo, 2003, Antioxidant activities of peel, pulp and seed fractions of common fruits as determined by FRAP assay, Nutr. Res., 23, 1719, 10.1016/j.nutres.2003.08.005 Brown, 1967, A novel in vitro assay for anti-inflammatory agents based on stabilization of erythrocytes, Exp. Biol. Med., 125, 837, 10.3181/00379727-125-32219 Shinde, 1999, Membrane stabilizing activity-a possible mechanism of action for the anti-inflammatory activity of Cedrus deodara wood oil, Fitoterapia, 70, 251, 10.1016/S0367-326X(99)00030-1 Anosike, 2012, Membrane stabilization as a mechanism of the anti-inflammatory activity of methanol extract of garden egg (Solanum aethiopicum), DARU J. Pharm. Sci., 20, 76, 10.1186/2008-2231-20-76 Nagaharika, 2013, Anti-inflammatory activity of leaves of Jatropha gossypifolia L. by hrbc membrane stabilization method, J. Acute Dis., 2, 156, 10.1016/S2221-6189(13)60118-3 Fayoumi, 2022, Phytochemical constituents and therapeutic effects of the essential oil of rose geranium (Pelargonium hybrid) cultivated in Lebanon, S. Afr. J. Bot., 147, 894, 10.1016/j.sajb.2022.03.039 Romay, 2000, Phycocyanin is an antioxidant protector of human erythrocytes against lysis by peroxyl radicals, J. Pharm. Pharmacol., 52, 367, 10.1211/0022357001774093 Pleonsil, 2013, Anti-oxidant activity of holo- and apo-c-phycocyanin and their protective effects on human erythrocytes, Int. J. Biol. Macromol., 60, 393, 10.1016/j.ijbiomac.2013.06.016 Pleonsil, 2013, An in vitro study of c-phycocyanin activity on protection of DNA and human erythrocyte membrane from oxidative damage, J. Chem. Pharm. Res., 5, 332 Jensen, 2015, Antioxidant and anti-inflammatory properties of an aqueous Cyanophyta extract derived from Arthrospira platensis: contribution to bioactivities by the non-phycocyanin aqueous fraction, J. Med. Food, 18, 535, 10.1089/jmf.2014.0083 Oh, 2015, A novel peptide purified from the fermented microalga Pavlova lutheri attenuates oxidative stress and melanogenesis in B16F10 melanoma cells, Process Biochem., 50, 1318, 10.1016/j.procbio.2015.05.007 Velayutham, 2021, GR15 peptide of S-adenosylmethionine synthase (SAMe) from Arthrospira platensis demonstrated antioxidant mechanism against H2O2 induced oxidative stress in in-vitro MDCK cells and in-vivo zebrafish larvae model, J. Biotechnol., 342, 79, 10.1016/j.jbiotec.2021.10.010