Longitudinal stiffness and thermal conductivity of twisted carbon nanoribbons
Tài liệu tham khảo
Anagnostopoulos, 2018, Strain engineering in highly wrinkled cvd graphene/epoxy systems, ACS Appl. Mater. Interfaces, 10, 43192, 10.1021/acsami.8b14698
Anandan, 2008, Thermal management of electronics: a review of literature, Therm. Sci., 12, 5, 10.2298/TSCI0802005A
Antidormi, 2017, Electron and phonon transport in twisted graphene nanoribbons, J. Phys. D Appl. Phys., 50, 234005, 10.1088/1361-6463/aa6fd3
Baimova, 2012, Velocities of sound and the densities of phonon states in a uniformly strained flat graphene sheet, Phys. Solid State, 54, 866, 10.1134/S1063783412040026
Baimova, 2014, Review on crumpled graphene: unique mechanical properties, Rev. Adv. Mater. Sci., 39, 69
Balandin, 2008, Superior thermal conductivity of single–layer graphene, Nano Lett., 8, 902907, 10.1021/nl0731872
Berber, 2000, Unusually high thermal conductivity of carbon nanotubes, Phys. Rev. Lett., 84, 4613, 10.1103/PhysRevLett.84.4613
Bets, 2009, Spontaneous twist and intrinsic instabilities of pristine graphene nanoribbons, Nano Res., 2, 161, 10.1007/s12274-009-9015-x
Blees, 2015, Graphene kirigami, Nature, 524, 204, 10.1038/nature14588
Chellattoan, 2013, The effect of torsional deformation on thermal conductivity of mono-, bi- and trilayer graphene nanoribbon, Solid State Commun., 173, 1, 10.1016/j.ssc.2013.08.027
Chen, 2010, Molecular dynamics simulations of heat conduction in nanostructures: effect of heat bath, J. Phys. Soc. Jpn., 79, 10.1143/JPSJ.79.074604
Chen, 2012, Thermal conductivity measurements of suspended graphene with and without wrinkles by micro-Raman mapping, Nanotechnology, 23, 365701, 10.1088/0957-4484/23/36/365701
Chen, 2013, Substrate coupling suppresses size dependence of thermal conductivity in supported graphene, Nanoscale, 5, 532, 10.1039/C2NR32949B
Chen, 2016, Mechanical self-assembly of a strain-engineered flexible layer: wrinkling, rolling, and twisting, Phys. Rev. Appl., 5, 10.1103/PhysRevApplied.5.017001
Chen, 2016, The thermal conductivity in hybridised graphene and boron nitride nanoribbons modulated with strain, J. Phys. D Appl. Phys., 49, 115301, 10.1088/0022-3727/49/11/115301
Chen, 2017, From flatland to spaceland: higher dimensional patterning with two-dimensional materials, Adv. Mater., 29, 1605096, 10.1002/adma.201605096
Cranford, 2011, Twisted and coiled ultralong multilayer graphene ribbons, Model. Simul. Mater. Sci. Eng., 19, 10.1088/0965-0393/19/5/054003
Deng, 2016, Wrinkled, rippled and crumpled graphene: an overview of formation mechanism, electronic properties, and applications, Mater. Today, 19, 197, 10.1016/j.mattod.2015.10.002
Ebrahimi, 2018, The effect of high concentrations and orientations of stonewales defects on the thermal conductivity of graphene nanoribbons, Mol. Simul., 44, 236, 10.1080/08927022.2017.1366654
Evazzade, 2018, Interaction of longitudinal phonons with discrete breather in strained graphene, Eur. Phys. J. B, 91, 163, 10.1140/epjb/e2018-90055-3
Fabbro, 2016, Graphene-based interfaces do not alter target nerve cells, ACS Nano, 10, 615, 10.1021/acsnano.5b05647
Fillipov, 1998, Energy transport between two attractors connected by a fermi-pasta-ulam chain, J. Phys. A Math. Gen., 31, 7719, 10.1088/0305-4470/31/38/008
Geim, 2007, The rise of graphene, Nat. Mater., 6, 183, 10.1038/nmat1849
Gunawardana, 2012, Tunable thermal transport and thermal rectification in strained graphene nanoribbons, Phys. Rev. B Condens. Matter Mater. Phys., 85, 245417, 10.1103/PhysRevB.85.245417
Gunlycke, 2008, Lattice vibrations in single-wall carbon nanotubes, Phys. Rev. B, 77, 10.1103/PhysRevB.77.014303
Haskins, 2011, Control of thermal and electronic transport in defect-engineered graphene nanoribbons, ACS Nano, 5, 3779, 10.1021/nn200114p
Hass, 2008, Why multilayer graphene on 4h-sic(0001) behaves like a single sheet of graphene, Phys. Rev. Lett., 100, 10.1103/PhysRevLett.100.125504
Hsiao, 2013, Observation of room temperature ballistic thermal conduction persisting over 8.3 μm in sige nanowires, Nat. Nanotechnol., 8, 534, 10.1038/nnano.2013.121
Hsiao, 2015, Micron-scale ballistic thermal conduction and suppressed thermal conductivity in heterogeneously interfaced nanowires, Phys. Rev. B Condens. Matter Mater. Phys., 91, 10.1103/PhysRevB.91.035406
Jayasena, 2014, Formation of carbon nanoscrolls during wedge-based mechanical exfoliation of Hopg, J. Micro Nano-Manufacturing, 2, 10.1115/1.4026325
Jiang, 2015, A review on the flexural mode of graphene: lattice dynamics, thermal conduction, thermal expansion, elasticity and nanomechanical resonance, J. Phys. Condens. Matter, 27, 10.1088/0953-8984/27/8/083001
Kit, 2012, Twisting graphene nanoribbons into carbon nanotubes, Phys. Rev. B Condens. Matter Mater. Phys., 85, 10.1103/PhysRevB.85.085428
Koniakhin, 2017, Substrate-induced reduction of graphene thermal conductivity, Phys. Rev. B, 95, 10.1103/PhysRevB.95.045418
Korznikova, 2014, Moving wrinklon in graphene nanoribbons, J. Phys. D Appl. Phys., 47, 345307, 10.1088/0022-3727/47/34/345307
Krivtsov, 2015, Heat transfer in infinite harmonic one-dimensional crystals, Dokl. Phys., 60, 407, 10.1134/S1028335815090062
Krivtsov, 2018, One-dimensional heat conduction and entropy production, Adv. Struct. Mater., 87, 197, 10.1007/978-3-319-73694-5_12
Kuzkin, 2017, Fast and slow thermal processes in harmonic scalar lattices, J. Phys. Condens. Matter, 29, 505401, 10.1088/1361-648X/aa98eb
Kuzkin, 2017, An analytical description of transient thermal processes in harmonic crystals, Phys. Solid State, 59, 1051, 10.1134/S1063783417050201
Kuzkin, 2017, High-frequency thermal processes in harmonic crystals, Dokl. Phys., 62, 85, 10.1134/S1028335817020070
Kuzmenko, 2008, Universal optical conductance of graphite, Phys. Rev. Lett., 100, 10.1103/PhysRevLett.100.117401
Lee, 2008, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, 321, 385388, 10.1126/science.1157996
Lee, 2017, Divergent and ultrahigh thermal conductivity in millimeter-long nanotubes, Phys. Rev. Lett., 118, 135901, 10.1103/PhysRevLett.118.135901
Legoll, 2009, Non-ergodicity of nose-hoover dynamics, Nonlinearity, 22, 1673, 10.1088/0951-7715/22/7/011
Lepri, 2003, Thermal conduction in classical low-dimensional lattices, Phys. Rep., 377, 1, 10.1016/S0370-1573(02)00558-6
Li, 2010, Twist-enhanced stretchability of graphene nanoribbons: a molecular dynamics study, J. Phys. D Appl. Phys., 43, 495405, 10.1088/0022-3727/43/49/495405
Li, 2010, Strain effects on the thermal conductivity of nanostructures, Phys. Rev. B, 81, 245318, 10.1103/PhysRevB.81.245318
Li, 2012, Colloquium: phononics: Manipulating heat flow with electronic analogs and beyond, Rev. Mod. Phys., 84, 1045, 10.1103/RevModPhys.84.1045
Li, 2013, Comparison of isotope effects on thermal conductivity of graphene nanoribbons and carbon nanotubes, Appl. Phys. Lett., 103, 10.1063/1.4813111
Li, 2014, Thermal conductivity of twisted bilayer graphene, Nanoscale, 6, 13402, 10.1039/C4NR04455J
Liu, 2012, Morphology and in-plane thermal conductivity of hybrid graphene sheets, Appl. Phys. Lett., 101, 211909, 10.1063/1.4767388
Liu, 2014, Interface thermal conductance and rectification in hybrid graphene/silicene monolayer, Carbon, 79, 236, 10.1016/j.carbon.2014.07.064
Liu, 2014, Interfacial thermal conductance of a silicene/graphene bilayer heterostructure and the effect of hydrogenation, ACS Appl. Mater. Interfaces, 6, 18180, 10.1021/am505173s
Liu, 2015, Thermal transport in a graphene-mos2 bilayer heterostructure: a molecular dynamics study, RSC Adv., 5, 29193, 10.1039/C4RA16891G
Luican, 2011, Single-layer behavior and its breakdown in twisted graphene layers, Phys. Rev. Lett., 106, 10.1103/PhysRevLett.106.126802
Ma, 2012, Strain effect on lattice vibration, heat capacity, and thermal conductivity of graphene, Appl. Phys. Lett., 101, 111904, 10.1063/1.4752010
Maldovan, 2013, Sound and heat revolutions in phononics, Nature, 503, 209, 10.1038/nature12608
Moraes Diniz, 2014, Self-reconstruction and predictability of bonds disruption in twisted graphene nanoribbons, Appl. Phys. Lett., 104, 10.1063/1.4867266
Mortazavi, 2017, Thermal and electronic transport characteristics of highly stretchable graphene kirigami, Nanoscale, 9, 16329, 10.1039/C7NR05231F
Ning, 2018, Assembly of advanced materials into 3d functional structures by methods inspired by origami and kirigami: a review, Adv. Mater. Interfaces, 5, 1800284, 10.1002/admi.201800284
Noid, 1991, Molecular dynamics simulation of twist motion in polyethylene, Macromolecules, 24, 4148, 10.1021/ma00014a029
Noshin, 2017, Impact of vacancies on the thermal conductivity of graphene nanoribbons: a molecular dynamics simulation study, AIP Adv., 7, 10.1063/1.4974996
Peng, 2017, Thermal conductance in graphene nanoribbons modulated by defects and alternating boron-nitride structures, Carbon, 113, 334, 10.1016/j.carbon.2016.11.066
Podolskaya, 2018, Anomalous heat transfer in one-dimensional diatomic harmonic crystal, Mater. Phys. Mech., 40, 172
Pop, 2012, Thermal properties of graphene: fundamentals and applications, MRS Bull., 37, 1273, 10.1557/mrs.2012.203
Rong, 1993, Electronic effects in scanning tunneling microscopy: moire pattern on a graphite surface, Phys. Rev. B, 48, 17427, 10.1103/PhysRevB.48.17427
Rowe, 2018, Development of a machine learning potential for graphene, Phys. Rev. B, 97, 10.1103/PhysRevB.97.054303
Saadatmand, 2018, Discrete breathers assist energy transfer to ac-driven nonlinear chains, Phys. Rev. E, 97, 10.1103/PhysRevE.97.022217
Savin, 2008, Discrete breathers in carbon nanotubes, EPL (Europhys. Lett.), 82, 66002, 10.1209/0295-5075/82/66002
Savin, 2017, Spatial localization and thermal rectification in inhomogeneously deformed lattices, Phys. Rev. B, 96, 10.1103/PhysRevB.96.064307
Savin, 2010, Suppression of thermal conductivity in graphene nanoribbons with rough edges, Phys. Rev. B, 82, 10.1103/PhysRevB.82.195422
Savin, 2015, Simulation of folded and scrolled packings of carbon nanoribbons, Phys. Solid State, 57, 2348, 10.1134/S1063783415110293
Savin, 2015, Scroll configurations of carbon nanoribbons, Phys. Rev. B, 92, 10.1103/PhysRevB.92.035412
Savin, 2017, Graphene nanoribbon winding around carbon nanotube, Comput. Mater. Sci., 135, 99, 10.1016/j.commatsci.2017.03.047
Shen, 2014, Mechanical properties and thermal conductivity of the twisted graphene nanoribbons, Mol. Phys., 112, 2614, 10.1080/00268976.2014.899404
Singh, 2011, Spectral phonon conduction and dominant scattering pathways in graphene, J. Appl. Phys., 110, 10.1063/1.3656451
Sokolov, 2017, Localized heat perturbation in harmonic 1d crystals: solutions for the equation of anomalous heat conduction, Phys. Mesomech., 20, 305, 10.1134/S1029959917030067
Su, 2018, Size effect of thermal conductivity in monolayer graphene, Appl. Therm. Eng., 144, 488, 10.1016/j.applthermaleng.2018.08.062
Sumpter, 1994, vol. 116, 27
Vandeparre, 2011, Wrinkling hierarchy in constrained thin sheets from suspended graphene to curtains, Phys. Rev. Lett., 106, 224301, 10.1103/PhysRevLett.106.224301
Wang, 2014, Two-dimensional thermal transport in graphene: a review of numerical modeling studies, Nanoscale Microscale Thermophys. Eng., 18, 155, 10.1080/15567265.2014.891680
Wang, 2014, Phonon lateral confinement enables thermal rectification in asymmetric single-material nanostructures, Nano Lett., 14, 592, 10.1021/nl403773f
Wang, 2017, Experimental study of thermal rectification in suspended monolayer graphene, Nat. Commun., 8, 15843, 10.1038/ncomms15843
Wei, 2011, Strain engineering of thermal conductivity in graphene sheets and nanoribbons: a demonstration of magic flexibility, Nanotechnology, 22, 105705, 10.1088/0957-4484/22/10/105705
Wei, 2014, Tuning thermal conductance in the twisted graphene and gamma graphyne nanoribbons, J. Appl. Phys., 115, 154313, 10.1063/1.4872136
Xia, 2016, Super flexibility and stability of graphene nanoribbons under severe twist, Phys. Chem. Chem. Phys., 18, 18406, 10.1039/C6CP02580C
Xiong, 2017, Crossover from ballistic to normal heat transport in the φ4 lattice: if nonconservation of momentum is the reason, what is the mechanism?, Phys. Rev. E, 96, 10.1103/PhysRevE.96.042109
Xu, 2015, Local strain effect on the thermal transport of graphene nanoribbons: a molecular dynamics investigation, Phys. Chem. Chem. Phys., 17, 12031, 10.1039/C4CP06014H
Yang, 2009, Thermal rectification in asymmetric graphene ribbons, Appl. Phys. Lett., 95, 10.1063/1.3183587
Yang, 2012, How does folding modulate thermal conductivity of graphene?, Appl. Phys. Lett., 100, 10.1063/1.3690871
Yeo, 2012, Strain dependence of the heat transport properties of graphene nanoribbons, Nanotechnology, 23, 495702, 10.1088/0957-4484/23/49/495702
Yin, 2013, Mechanics of rolling of nanoribbon on tube and sphere, Nanoscale, 5, 5450, 10.1039/c3nr00489a
Yu, 2000, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science, 287, 637, 10.1126/science.287.5453.637
Zang, 2013, Multifunctionality and control of the crumpling and unfolding of large-area graphene, Nat. Mater., 12, 321, 10.1038/nmat3542
Zhai, 2011, Stretching-enhanced ballistic thermal conductance in graphene nanoribbons, EPL (Europhys. Lett.), 96, 16002, 10.1209/0295-5075/96/16002
Zhang, 2012, Thermal conductivity of defective graphene, Phys. Lett. A, 376, 3668, 10.1016/j.physleta.2012.10.048
Zhang, 2013, Effect of tensile strain on thermal conductivity in monolayer graphene nanoribbons: a molecular dynamics study, Sensors (Basel, Switz.), 13, 9388, 10.3390/s130709388
Zhang, 2015, A comprehensive review on the molecular dynamics simulation of the novel thermal properties of graphene, RSC Adv., 5, 89415, 10.1039/C5RA18579C
Zhang, 2017, Printing, folding and assembly methods for forming 3d mesostructures in advanced materials, Nat. Rev. Mater., 2, 17019, 10.1038/natrevmats.2017.19
Zhao, 2013, Thermal conductivity of carbon nanocoils, Appl. Phys. Lett., 103, 233511, 10.1063/1.4839396