Longitudinal stiffness and thermal conductivity of twisted carbon nanoribbons

European Journal of Mechanics - A/Solids - Tập 80 - Trang 103920 - 2020
A.V. Savin1, E.A. Korznikova2,3, A.M. Krivtsov4,5, S.V. Dmitriev2,6
1N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Science (FRCCP RAS), Moscow, 119991, Russia
2Institute for Metals Superplasticity Problems of RAS, 39 Khalturin St., Ufa, 450001, Russia
3Ufa state aviation technical university, 12 Karl Marx st., Ufa 450008, Russia
4Peter the Great Saint Petersburg Polytechnical University, Polytechnicheskaya Street 29, Saint Petersburg, Russia
5Institute for Problems in Mechanical Engineering RAS, Bolshoy pr. V.O. 61, Saint Petersburg, Russia
6National Research Tomsk State University, 36 Lenin Prospekt, Tomsk 634050, Russia

Tài liệu tham khảo

Anagnostopoulos, 2018, Strain engineering in highly wrinkled cvd graphene/epoxy systems, ACS Appl. Mater. Interfaces, 10, 43192, 10.1021/acsami.8b14698 Anandan, 2008, Thermal management of electronics: a review of literature, Therm. Sci., 12, 5, 10.2298/TSCI0802005A Antidormi, 2017, Electron and phonon transport in twisted graphene nanoribbons, J. Phys. D Appl. Phys., 50, 234005, 10.1088/1361-6463/aa6fd3 Baimova, 2012, Velocities of sound and the densities of phonon states in a uniformly strained flat graphene sheet, Phys. Solid State, 54, 866, 10.1134/S1063783412040026 Baimova, 2014, Review on crumpled graphene: unique mechanical properties, Rev. Adv. Mater. Sci., 39, 69 Balandin, 2008, Superior thermal conductivity of single–layer graphene, Nano Lett., 8, 902907, 10.1021/nl0731872 Berber, 2000, Unusually high thermal conductivity of carbon nanotubes, Phys. Rev. Lett., 84, 4613, 10.1103/PhysRevLett.84.4613 Bets, 2009, Spontaneous twist and intrinsic instabilities of pristine graphene nanoribbons, Nano Res., 2, 161, 10.1007/s12274-009-9015-x Blees, 2015, Graphene kirigami, Nature, 524, 204, 10.1038/nature14588 Chellattoan, 2013, The effect of torsional deformation on thermal conductivity of mono-, bi- and trilayer graphene nanoribbon, Solid State Commun., 173, 1, 10.1016/j.ssc.2013.08.027 Chen, 2010, Molecular dynamics simulations of heat conduction in nanostructures: effect of heat bath, J. Phys. Soc. Jpn., 79, 10.1143/JPSJ.79.074604 Chen, 2012, Thermal conductivity measurements of suspended graphene with and without wrinkles by micro-Raman mapping, Nanotechnology, 23, 365701, 10.1088/0957-4484/23/36/365701 Chen, 2013, Substrate coupling suppresses size dependence of thermal conductivity in supported graphene, Nanoscale, 5, 532, 10.1039/C2NR32949B Chen, 2016, Mechanical self-assembly of a strain-engineered flexible layer: wrinkling, rolling, and twisting, Phys. Rev. Appl., 5, 10.1103/PhysRevApplied.5.017001 Chen, 2016, The thermal conductivity in hybridised graphene and boron nitride nanoribbons modulated with strain, J. Phys. D Appl. Phys., 49, 115301, 10.1088/0022-3727/49/11/115301 Chen, 2017, From flatland to spaceland: higher dimensional patterning with two-dimensional materials, Adv. Mater., 29, 1605096, 10.1002/adma.201605096 Cranford, 2011, Twisted and coiled ultralong multilayer graphene ribbons, Model. Simul. Mater. Sci. Eng., 19, 10.1088/0965-0393/19/5/054003 Deng, 2016, Wrinkled, rippled and crumpled graphene: an overview of formation mechanism, electronic properties, and applications, Mater. Today, 19, 197, 10.1016/j.mattod.2015.10.002 Ebrahimi, 2018, The effect of high concentrations and orientations of stonewales defects on the thermal conductivity of graphene nanoribbons, Mol. Simul., 44, 236, 10.1080/08927022.2017.1366654 Evazzade, 2018, Interaction of longitudinal phonons with discrete breather in strained graphene, Eur. Phys. J. B, 91, 163, 10.1140/epjb/e2018-90055-3 Fabbro, 2016, Graphene-based interfaces do not alter target nerve cells, ACS Nano, 10, 615, 10.1021/acsnano.5b05647 Fillipov, 1998, Energy transport between two attractors connected by a fermi-pasta-ulam chain, J. Phys. A Math. Gen., 31, 7719, 10.1088/0305-4470/31/38/008 Geim, 2007, The rise of graphene, Nat. Mater., 6, 183, 10.1038/nmat1849 Gunawardana, 2012, Tunable thermal transport and thermal rectification in strained graphene nanoribbons, Phys. Rev. B Condens. Matter Mater. Phys., 85, 245417, 10.1103/PhysRevB.85.245417 Gunlycke, 2008, Lattice vibrations in single-wall carbon nanotubes, Phys. Rev. B, 77, 10.1103/PhysRevB.77.014303 Haskins, 2011, Control of thermal and electronic transport in defect-engineered graphene nanoribbons, ACS Nano, 5, 3779, 10.1021/nn200114p Hass, 2008, Why multilayer graphene on 4h-sic(0001) behaves like a single sheet of graphene, Phys. Rev. Lett., 100, 10.1103/PhysRevLett.100.125504 Hsiao, 2013, Observation of room temperature ballistic thermal conduction persisting over 8.3 μm in sige nanowires, Nat. Nanotechnol., 8, 534, 10.1038/nnano.2013.121 Hsiao, 2015, Micron-scale ballistic thermal conduction and suppressed thermal conductivity in heterogeneously interfaced nanowires, Phys. Rev. B Condens. Matter Mater. Phys., 91, 10.1103/PhysRevB.91.035406 Jayasena, 2014, Formation of carbon nanoscrolls during wedge-based mechanical exfoliation of Hopg, J. Micro Nano-Manufacturing, 2, 10.1115/1.4026325 Jiang, 2015, A review on the flexural mode of graphene: lattice dynamics, thermal conduction, thermal expansion, elasticity and nanomechanical resonance, J. Phys. Condens. Matter, 27, 10.1088/0953-8984/27/8/083001 Kit, 2012, Twisting graphene nanoribbons into carbon nanotubes, Phys. Rev. B Condens. Matter Mater. Phys., 85, 10.1103/PhysRevB.85.085428 Koniakhin, 2017, Substrate-induced reduction of graphene thermal conductivity, Phys. Rev. B, 95, 10.1103/PhysRevB.95.045418 Korznikova, 2014, Moving wrinklon in graphene nanoribbons, J. Phys. D Appl. Phys., 47, 345307, 10.1088/0022-3727/47/34/345307 Krivtsov, 2015, Heat transfer in infinite harmonic one-dimensional crystals, Dokl. Phys., 60, 407, 10.1134/S1028335815090062 Krivtsov, 2018, One-dimensional heat conduction and entropy production, Adv. Struct. Mater., 87, 197, 10.1007/978-3-319-73694-5_12 Kuzkin, 2017, Fast and slow thermal processes in harmonic scalar lattices, J. Phys. Condens. Matter, 29, 505401, 10.1088/1361-648X/aa98eb Kuzkin, 2017, An analytical description of transient thermal processes in harmonic crystals, Phys. Solid State, 59, 1051, 10.1134/S1063783417050201 Kuzkin, 2017, High-frequency thermal processes in harmonic crystals, Dokl. Phys., 62, 85, 10.1134/S1028335817020070 Kuzmenko, 2008, Universal optical conductance of graphite, Phys. Rev. Lett., 100, 10.1103/PhysRevLett.100.117401 Lee, 2008, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, 321, 385388, 10.1126/science.1157996 Lee, 2017, Divergent and ultrahigh thermal conductivity in millimeter-long nanotubes, Phys. Rev. Lett., 118, 135901, 10.1103/PhysRevLett.118.135901 Legoll, 2009, Non-ergodicity of nose-hoover dynamics, Nonlinearity, 22, 1673, 10.1088/0951-7715/22/7/011 Lepri, 2003, Thermal conduction in classical low-dimensional lattices, Phys. Rep., 377, 1, 10.1016/S0370-1573(02)00558-6 Li, 2010, Twist-enhanced stretchability of graphene nanoribbons: a molecular dynamics study, J. Phys. D Appl. Phys., 43, 495405, 10.1088/0022-3727/43/49/495405 Li, 2010, Strain effects on the thermal conductivity of nanostructures, Phys. Rev. B, 81, 245318, 10.1103/PhysRevB.81.245318 Li, 2012, Colloquium: phononics: Manipulating heat flow with electronic analogs and beyond, Rev. Mod. Phys., 84, 1045, 10.1103/RevModPhys.84.1045 Li, 2013, Comparison of isotope effects on thermal conductivity of graphene nanoribbons and carbon nanotubes, Appl. Phys. Lett., 103, 10.1063/1.4813111 Li, 2014, Thermal conductivity of twisted bilayer graphene, Nanoscale, 6, 13402, 10.1039/C4NR04455J Liu, 2012, Morphology and in-plane thermal conductivity of hybrid graphene sheets, Appl. Phys. Lett., 101, 211909, 10.1063/1.4767388 Liu, 2014, Interface thermal conductance and rectification in hybrid graphene/silicene monolayer, Carbon, 79, 236, 10.1016/j.carbon.2014.07.064 Liu, 2014, Interfacial thermal conductance of a silicene/graphene bilayer heterostructure and the effect of hydrogenation, ACS Appl. Mater. Interfaces, 6, 18180, 10.1021/am505173s Liu, 2015, Thermal transport in a graphene-mos2 bilayer heterostructure: a molecular dynamics study, RSC Adv., 5, 29193, 10.1039/C4RA16891G Luican, 2011, Single-layer behavior and its breakdown in twisted graphene layers, Phys. Rev. Lett., 106, 10.1103/PhysRevLett.106.126802 Ma, 2012, Strain effect on lattice vibration, heat capacity, and thermal conductivity of graphene, Appl. Phys. Lett., 101, 111904, 10.1063/1.4752010 Maldovan, 2013, Sound and heat revolutions in phononics, Nature, 503, 209, 10.1038/nature12608 Moraes Diniz, 2014, Self-reconstruction and predictability of bonds disruption in twisted graphene nanoribbons, Appl. Phys. Lett., 104, 10.1063/1.4867266 Mortazavi, 2017, Thermal and electronic transport characteristics of highly stretchable graphene kirigami, Nanoscale, 9, 16329, 10.1039/C7NR05231F Ning, 2018, Assembly of advanced materials into 3d functional structures by methods inspired by origami and kirigami: a review, Adv. Mater. Interfaces, 5, 1800284, 10.1002/admi.201800284 Noid, 1991, Molecular dynamics simulation of twist motion in polyethylene, Macromolecules, 24, 4148, 10.1021/ma00014a029 Noshin, 2017, Impact of vacancies on the thermal conductivity of graphene nanoribbons: a molecular dynamics simulation study, AIP Adv., 7, 10.1063/1.4974996 Peng, 2017, Thermal conductance in graphene nanoribbons modulated by defects and alternating boron-nitride structures, Carbon, 113, 334, 10.1016/j.carbon.2016.11.066 Podolskaya, 2018, Anomalous heat transfer in one-dimensional diatomic harmonic crystal, Mater. Phys. Mech., 40, 172 Pop, 2012, Thermal properties of graphene: fundamentals and applications, MRS Bull., 37, 1273, 10.1557/mrs.2012.203 Rong, 1993, Electronic effects in scanning tunneling microscopy: moire pattern on a graphite surface, Phys. Rev. B, 48, 17427, 10.1103/PhysRevB.48.17427 Rowe, 2018, Development of a machine learning potential for graphene, Phys. Rev. B, 97, 10.1103/PhysRevB.97.054303 Saadatmand, 2018, Discrete breathers assist energy transfer to ac-driven nonlinear chains, Phys. Rev. E, 97, 10.1103/PhysRevE.97.022217 Savin, 2008, Discrete breathers in carbon nanotubes, EPL (Europhys. Lett.), 82, 66002, 10.1209/0295-5075/82/66002 Savin, 2017, Spatial localization and thermal rectification in inhomogeneously deformed lattices, Phys. Rev. B, 96, 10.1103/PhysRevB.96.064307 Savin, 2010, Suppression of thermal conductivity in graphene nanoribbons with rough edges, Phys. Rev. B, 82, 10.1103/PhysRevB.82.195422 Savin, 2015, Simulation of folded and scrolled packings of carbon nanoribbons, Phys. Solid State, 57, 2348, 10.1134/S1063783415110293 Savin, 2015, Scroll configurations of carbon nanoribbons, Phys. Rev. B, 92, 10.1103/PhysRevB.92.035412 Savin, 2017, Graphene nanoribbon winding around carbon nanotube, Comput. Mater. Sci., 135, 99, 10.1016/j.commatsci.2017.03.047 Shen, 2014, Mechanical properties and thermal conductivity of the twisted graphene nanoribbons, Mol. Phys., 112, 2614, 10.1080/00268976.2014.899404 Singh, 2011, Spectral phonon conduction and dominant scattering pathways in graphene, J. Appl. Phys., 110, 10.1063/1.3656451 Sokolov, 2017, Localized heat perturbation in harmonic 1d crystals: solutions for the equation of anomalous heat conduction, Phys. Mesomech., 20, 305, 10.1134/S1029959917030067 Su, 2018, Size effect of thermal conductivity in monolayer graphene, Appl. Therm. Eng., 144, 488, 10.1016/j.applthermaleng.2018.08.062 Sumpter, 1994, vol. 116, 27 Vandeparre, 2011, Wrinkling hierarchy in constrained thin sheets from suspended graphene to curtains, Phys. Rev. Lett., 106, 224301, 10.1103/PhysRevLett.106.224301 Wang, 2014, Two-dimensional thermal transport in graphene: a review of numerical modeling studies, Nanoscale Microscale Thermophys. Eng., 18, 155, 10.1080/15567265.2014.891680 Wang, 2014, Phonon lateral confinement enables thermal rectification in asymmetric single-material nanostructures, Nano Lett., 14, 592, 10.1021/nl403773f Wang, 2017, Experimental study of thermal rectification in suspended monolayer graphene, Nat. Commun., 8, 15843, 10.1038/ncomms15843 Wei, 2011, Strain engineering of thermal conductivity in graphene sheets and nanoribbons: a demonstration of magic flexibility, Nanotechnology, 22, 105705, 10.1088/0957-4484/22/10/105705 Wei, 2014, Tuning thermal conductance in the twisted graphene and gamma graphyne nanoribbons, J. Appl. Phys., 115, 154313, 10.1063/1.4872136 Xia, 2016, Super flexibility and stability of graphene nanoribbons under severe twist, Phys. Chem. Chem. Phys., 18, 18406, 10.1039/C6CP02580C Xiong, 2017, Crossover from ballistic to normal heat transport in the φ4 lattice: if nonconservation of momentum is the reason, what is the mechanism?, Phys. Rev. E, 96, 10.1103/PhysRevE.96.042109 Xu, 2015, Local strain effect on the thermal transport of graphene nanoribbons: a molecular dynamics investigation, Phys. Chem. Chem. Phys., 17, 12031, 10.1039/C4CP06014H Yang, 2009, Thermal rectification in asymmetric graphene ribbons, Appl. Phys. Lett., 95, 10.1063/1.3183587 Yang, 2012, How does folding modulate thermal conductivity of graphene?, Appl. Phys. Lett., 100, 10.1063/1.3690871 Yeo, 2012, Strain dependence of the heat transport properties of graphene nanoribbons, Nanotechnology, 23, 495702, 10.1088/0957-4484/23/49/495702 Yin, 2013, Mechanics of rolling of nanoribbon on tube and sphere, Nanoscale, 5, 5450, 10.1039/c3nr00489a Yu, 2000, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science, 287, 637, 10.1126/science.287.5453.637 Zang, 2013, Multifunctionality and control of the crumpling and unfolding of large-area graphene, Nat. Mater., 12, 321, 10.1038/nmat3542 Zhai, 2011, Stretching-enhanced ballistic thermal conductance in graphene nanoribbons, EPL (Europhys. Lett.), 96, 16002, 10.1209/0295-5075/96/16002 Zhang, 2012, Thermal conductivity of defective graphene, Phys. Lett. A, 376, 3668, 10.1016/j.physleta.2012.10.048 Zhang, 2013, Effect of tensile strain on thermal conductivity in monolayer graphene nanoribbons: a molecular dynamics study, Sensors (Basel, Switz.), 13, 9388, 10.3390/s130709388 Zhang, 2015, A comprehensive review on the molecular dynamics simulation of the novel thermal properties of graphene, RSC Adv., 5, 89415, 10.1039/C5RA18579C Zhang, 2017, Printing, folding and assembly methods for forming 3d mesostructures in advanced materials, Nat. Rev. Mater., 2, 17019, 10.1038/natrevmats.2017.19 Zhao, 2013, Thermal conductivity of carbon nanocoils, Appl. Phys. Lett., 103, 233511, 10.1063/1.4839396